Novel and Robust Forward Kinematic Algorithm for Real-Time Control of General Six-Degree-of-Freedom Parallel Robot for Tele-Manipulation and Tele-Navigation

Abstract The forward kinematics (FK) of a 6-6 universal-prismatic-spherical (UPS) structure of a parallel robot is highly nonlinear, coupled, and has a one-to-many nature of mapping. There exists no close form solution to a forward kinematic problem (FKP), and real-time kinematic control is extremely difficult. This paper presents the implementation of time efficient and robust […]

A Novel Elbow-Inspired Cable-Driven Tensegrity Joint: Bionic Design, Coupled Kinematics, and Load Performance

Abstract Tensegrity-based robot joint offers mechanical compliance under external impact and in man-robot interaction. So its practical bionic design has become a research hotspot. A variety of tensegrity-based flexible joints have been proposed and verified, but the research is not in-depth enough on control and motion modeling, transmission characteristics, and load performance analysis for robot […]

Complete Kinematics/Dynamics Modeling and Performance Analysis of a Novel SCARA Parallel Manipulator Based on Screw Theory

Abstract In this paper, a novel Selective Compliance Assembly Robot Arm (SCARA) high-speed parallel manipulator that can realize three-translation and one-rotation motion is proposed, and an accurate dynamic modeling methodology is investigated. The mechanism is composed of four limbs with a double parallelogram structure and a single moving platform. The high bearing capacity and high […]

A Dimensionless Large Displacement Model for Flexure Hinges of Elliptical Geometry

Abstract Flexure hinges are joints typically used in the design and manufacturing of compliant mechanisms, especially when small dimensions do not allow for conventional mechanical devices. In this paper, a closed-form solution is proposed for a nonlinear stiffness model used to describe the static displacements obtained on a flexure hinge of elementary geometry as a […]

Synthesis and Analysis of Plane–Space Switching Mechanisms Based on a Plane-Symmetric Eight-Bar Linkage

Abstract This paper proposes a novel synthesis method for constructing plane–space switching mechanisms based on the symmetric plane of the regular prism. First, the structure equation and motion characteristic of plane-symmetric eight-bar linkage are presented. Then, the plane-symmetric seven-bar linkage and rhombic Bricard linkage are obtained by locking the joint of the eight-bar linkage. Four […]

Design, Modeling, and Control of a Compact and Reconfigurable Variable Stiffness Actuator Using Disc Spring

Abstract This paper proposes a compact and reconfigurable variable stiffness actuator (VSA) using disc spring which is named as SDS-VSA (symmetrical disc spring variable stiffness actuator). To enhance the actuator’s torque density, symmetric compression springs are integrated into the cam-roller-spring mechanism, and a disc spring combination design is employed instead of conventional springs. The disc […]

Design and Modeling of a Non-Flat Foldable Tubular Kirigami With Compliant Joints

Abstract This paper applies the kirigami technique to a non-rigid foldable tubular origami to make a rigid foldable tubular design, i.e., a radially closable kirigami (RC-kiri). The laminar emergent torsional (LET) compliant joint is applied to surrogate the crease, which makes the design applicable in practical engineering applications. By incorporating a non-flat folding design, the […]

Kinetostatic Analysis of a Spatial Cable-Actuated Variable Stiffness Joint

Abstract The demand for robots capable of performing collaborative tasks requiring interactions with the environment is on the rise. Safe interactions with the environment require attributes such as high dexterity and compliance around obstacles, while still maintaining the requisite stiffness levels for payload manipulation. Such attributes are inherent to biological musculoskeletal systems. Motivated by this […]

A Dynamical Model for the Control of a Guyed Tensegrity Beam Under Large Displacements

Abstract Most studies regarding models of tensegrity systems miss the possibility of large static deformations or provide elaborate and lengthy solutions to determine the system dynamics. Contrarily, this work presents a straightforward methodology to find the dynamic characteristics of a guyed tensegrity beam structure, allowing the application of vibration control strategies in conditions of large […]