Feasibility Design and Control of a Lower Leg Gait Emulator Utilizing a Mobile 3-Revolute, Prismatic, Revolute Parallel Manipulator

Abstract Design and control of lower extremity robotic prostheses are iterative tasks that would greatly benefit from testing platforms that would autonomously replicate realistic gait conditions. This paper presents the design of a novel mobile 3-degree-of-freedom (DOF) parallel manipulator integrated with a mobile base to emulate human gait for lower limb prosthesis evaluation in the […]

Announcing the 2021 Best Paper Award and Honorable Mention

Together with the Editorial Board of the Journal of Mechanisms and Robotics (JMR), I am pleased to announce the winner of the journal’s 2021 Best Paper Award:P. Reinier Kuppens, Miguel A. Bessa, Just L. Herder, and Jonathan B. Hopkins, 2021, “Compliant Mechanisms That Use Static Balancing to Achieve Dramatically Different States of Stiffness,” ASME J. […]

Dynamic Modeling and Simulation of a Hybrid Robot

Abstract The unique structure of hybrid robot makes its dynamic characteristic different from that of the traditional machine tools. Therefore, the dynamic model is crucial to both designing and application of hybrid robot. In this paper, a new type of five-degrees-of-freedom (5DoF) hybrid robot is introduced, and its dynamic model is established. First, the kinematic […]

A Snake-Inspired Swallowing Robot Based on Hoberman’s Linkages

Abstract To solve the problems of existing swallowing robots, such as low load capacity, small deploy/fold ratio, and small swallowing space, this article presents a new snake-inspired swallowing robot (SSR) that can synchronously deploy and fold both axially and radially. The SSR is composed of multiple modules, each of which includes two end disk mechanisms […]

A Rigid Morphing Mechanism Enabled Earthworm-Like Crawling Robot

Abstract Inspired by natural earthworms’ locomotion mechanism, this paper investigates how the earthworm’s muscle works and presents the approach to mimic segmental muscle by employing rigid elements-based morphing structures. Specifically, the proposed earthworm-like robot employs a class of 2D rigid elements and their array to achieve programable bidirectional 3D deformation, making the formed mechanism precisely […]

Efficient Model-Free Calibration of a 5-Degree of Freedom Hybrid Robot

Abstract The pose accuracy is a crucial issue that limits the application of hybrid robots. The model-free calibration instead of complex error modeling is investigated to improve the pose accuracy of a 5-degrees-of-freedom (DOF) hybrid robot efficiently. To overcome the difficult problem of model-free calibration in high-dimension joint space that the required measurement data for […]

A Review of Bat-Inspired Shape Morphing Robotic Design

Abstract By virtue of distinguished wing shape morphing characteristics, the unrivaled agility and flight maneuverability of bats have inspired scientists and engineers to develop novel forms of robots that can fly like bats. The unique wing conformations, flight kinematics, and aerodynamics offer significant advantages over the conventional form of miniature air vehicle in terms of […]

Modeling of Industrial Robot Kinematics Using a Hybrid Analytical and Statistical Approach

Abstract Industrial robots are highly desirable in applications including manufacturing and surgery. However, errors in the modeling of the kinematics of robotic arms limit their positional accuracy in industrial applications. Specifically, analytical kinematic models of the robot arm suffer from errors in coefficient calibrations and the inability to account for effects including gear backlash. However, […]