This article investigates decoupled motion control and dimension optimization of composite notched continuum mechanisms. In general, the end-effectors of endoscopic surgical robots predominantly consist of rigid articulated actuators, which exhibit limited maneuverability and face challenges in constrained operational environments. The introduction of continuum mechanisms has emerged as a key solution to address these limitations. In this article, the design, analysis, and development of a novel six-degrees-of-freedom (6-DOF) composite continuum surgical robot are presented. Kinematic modeling of the continuum mechanisms is performed, and a decoupled kinematic model of the composite continuum mechanisms is constructed. Furthermore, based on the local and global dexterity of the composite continuum mechanisms, the optimization of the two-segment lengths of the composite continuum mechanisms is completed. Subsequently, both the forward and inverse kinematic models of the 6-DOF composite continuum surgical robot are developed. Finally, through a series of motion control experiments, the decoupled kinematic model of the prototype is proved to be effective. The prototype has a certain load capacity and can accomplish simple trajectory planning motion, which has the potential application in the field of single-hole interventional minimally invasive surgery.
Journal of Mechanisms and Robotics Open Issues