Latest Papers

ASME Journal of Mechanisms and Robotics

  • Fully Foldable Mechanical Metamaterials With Isotropic Auxeticity and Its Generated Multi-Mode Folding Form
    on February 10, 2025 at 12:00 am

    AbstractAuxetic materials, a type of mechanical metamaterial with negative Poisson's ratio, are potentially utilized in the realms of energy absorption and engineering structures. However, most of the existing auxetic materials either contain a large amount of rotational motion or still have gaps when fully folded, which is not conducive to lifting loads. Besides, their application is limited to flexible environments due to their single-folding mode. To overcome such limitations, a fully foldable mechanical metamaterial with isotropic auxeticity is proposed by utilizing the Sarrus mechanism, and a derivative multi-mode folding form is obtained in this paper. Then, the degrees-of-freedom (DOF), bistability, and kinematic characterizations are analyzed to show the performance of the proposed structures. Finally, the parameters of the proposed fully foldable mechanical metamaterials are discussed to simplify the structures. Some prototypes are fabricated to validate the effectiveness and performance of the proposed mechanical metamaterials. The proposed mechanical metamaterials have some merits, such as isotropic auxeticity, being fully folded to achieve dense compression, being bistable with load-bearing capacity, multi-mode folding form, and single-DOF, and they have versatile potential applications in complex environments requiring large deformation and flexible adaptation.

  • Elastostatic Performance Evaluation of a Full-Mobility Parallel-Kinematics Machine With Flexible Links
    on February 10, 2025 at 12:00 am

    AbstractThe subject of this article is the elastostatics of a novel three-limb, full-mobility parallel-kinematics machine (PKM) with flexible links, intended for high-frequency, small-amplitude operations. The objective is to establish the Cartesian stiffness model and performance indices capable of guiding the structural design of the machines of interest. We base our analysis on what we term an elastostatic Cartesian model: the light-weight limb rods are modeled as identical, massless, linearly elastic beams; the motor shafts and couplings are modeled likewise, with the beams replaced by identical, massless, linearly elastic torsional springs, both link flexibility and actuator flexibility thus being considered. The moving platform is assumed to be the only moving rigid body of the machine. This platform is thus regarded as a rigid body elastically mounted onto the base platform via a six-degree-of-freedom (six-DoF) Cartesian spring. Then, the PKM 6×6 Cartesian stiffness matrix, considering the flexibility of both limb rods and motor shafts, is derived via the pertinent kinetostatic relations. Moreover, three alternative indices are defined from this model to evaluate the robot stiffness, which allows us to choose the most appropriate one for specific applications.

  • Announcing the Journal of Mechanisms and Robotics 2023 Best Paper Award
    on February 10, 2025 at 12:00 am

    JMR Best Paper for 2023

  • Active Cables Selection for Collocated Vibration Control of Small-Sized Overconstrained Cable-Driven Parallel Robots
    on February 10, 2025 at 12:00 am

    AbstractCable-driven parallel robots (CDPRs) are well appreciated for high dynamics applications, due to their lightweights moving parts. Nevertheless, due to the low stiffness of cables, vibrations can occur and can degrade performances if high precision is required, such as in additive manufacturing for instance. Previous works have studied techniques to counteract vibrations, like using motor command or embedded devices. Based on a previous first exploration of using piezoelectric transducers on cables for this type of robot, this paper presents a proper formulation of the collocated active vibration control to damp the end-effector oscillations of small-sized overconstrained CDPRs by the measure of the variation in cable tensions. This goes through a modeling of such a robot with embedded piezoelectric transducers under appropriate assumptions. From this control formulation, it is shown that the collocated nature of these transducers are fundamental. It is thus possible to highlight an energetic index of active cables selection, regardless of the used control law. The proposed technique is developed theoretically and analyzed through simulations on an eight-cable robot.

An Undulating Kirigami Pattern With Enhanced Tear Strength

Abstract

Kirigami, the cutting and folding of sheets, can create useful three-dimensional shapes from flat sheets of material. Some kirigami patterns self-deploy from their flat state when tension is applied; we call these tension-activated kirigami (TAK) patterns. A new TAK pattern has been proposed that produces ribbons of material that undulate out of the plane of the kirigami sheet when deployed with tension. In the planar state, this pattern comprises staggered rows of multiple slits, so we call it the multi-slit pattern. The multiple slits can include two, three, or more slits in place of the widely studied single-slit kirigami pattern, with an increased number of undulations produced with additional slits. An enhancement is also proposed that increases the tear strength of this pattern by adding multiple beams to carry the tension forces that deploy and hold the structure. This multi-beam enhancement to the multi-slit pattern has been investigated with experiments and duplicated with finite element analysis simulations. A good correlation was found, and a broader design space was also investigated with additional simulations. It is proposed that the multi-slit undulating kirigami pattern, with or without the multi-beam enhancement, produces a compelling new deployed structure with increased interlocking and the potential for many applications.

Read More

Journal of Mechanisms and Robotics Open Issues