Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Full Forward Solution of Large Deflection, End Loaded Cantilever Beams Using Elliptic Integrals

Abstract

This paper presents an algorithm to solve for all solutions to the forward problem for large deflections of inextensible end loaded Euler beams, a problem often encountered in compliant mechanism design and analysis. The forward problem is characterized by known end moment and end force (magnitude and direction), and the horizontal, vertical, and rotational deflections of the end of the beam must be found. Previous solutions have relied on the use of numerical solvers, which normally result in finding a single solution, but are unable to find all possible solutions for a given loading condition. The algorithm presented here works by reformulating the problem to have a single unknown, the end angle of the beam. Using this reformulation, a search vector of possible end angles can be used to find all solutions within desired bounds for the rotation of the end of the beam. The results were compared to nonlinear finite element modeling for verification. The results show that the vast majority of possible load conditions result in multiple (at least two) solutions, with larger end forces generally leading to more solutions. This finding suggests that such solutions may be used to design novel multi-stable compliant mechanisms, including the possibility of metamaterials with variable volume.

Read More

Journal of Mechanisms and Robotics Open Issues