Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Design of an Underactuated, Flexure-Based Gripper, Actuated Through a Push–Pull Flexure

Abstract

The design of grippers for the agro-industry is challenging. To be cost-effective, the picked object should be moved around fast requiring a firm grip on the fruit of different hardnesses, shapes, and sizes without causing damage. This article presents a self-adaptive flexure-based gripper design optimized for high acceleration loads. A main novelty is that it is actuated through a push–pull flexure that is loaded in tension when the gripper closes, allowing it to handle high actuation forces without the risk of buckling. To create a robust gripper that can handle relatively high loads, flexures are used that are reinforced and have a thickness variation over the length. The optimal thickness distribution of these flexures is derived analytically to facilitate the design process. The derived principles are generally applicable to flexure hinges. The resulting advanced cartwheel flexure joint, as used in this gripper, has a 2.5 times higher support stiffness and a 1.5 times higher buckling load when compared to a conventional cartwheel joint of the same size and actuation stiffness. The PP-gripper is numerically optimized for a high pull-out force, using analytical design insights as a starting point. The gripper can grip circular objects with radii between 30 and 40 mm. The pull-out force is 21.4 N, with a maximum actuation force of 100 N. Good correspondence is found between the geometric design approach, the numerically optimized design, and the results of the experimental validation.

Read More

Journal of Mechanisms and Robotics Open Issues