Latest Papers

ASME Journal of Mechanisms and Robotics

  • An Improved Dual Quaternion Dynamic Movement Primitives-Based Algorithm for Robot-Agnostic Learning and Execution of Throwing Tasks
    on May 9, 2025 at 12:00 am

    AbstractInspired by human nature, roboticists have conceived robots as tools meant to be flexible, capable of performing a wide variety of tasks. Learning from demonstration methods allow us to “teach” robots the way we would perform tasks, in a versatile and adaptive manner. Dynamic movement primitives (DMP) aims for learning complex behaviors in such a way, representing tasks as stable, well-understood dynamical systems. By modeling movements over the SE(3) group, modeled primitives can be generalized for any robotic manipulator capable of full end-effector 3D movement. In this article, we present a robot-agnostic formulation of discrete DMP based on the dual quaternion algebra, oriented to modeling throwing movements. We consider adapted initial and final poses and velocities, all computed from a projectile kinematic model and from the goal at which the projectile is aimed. Experimental demonstrations are carried out in both a simulated and a real environment. Results support the effectiveness of the improved method formulation.

  • Chained Timoshenko Beam Constraint Model With Applications in Large Deflection Analysis of Compliant Mechanism
    on May 9, 2025 at 12:00 am

    AbstractAccurately analyzing the large deformation behaviors of compliant mechanisms has always been a significant challenge in the design process. The classical Euler–Bernoulli beam theory serves as the primary theoretical basis for the large deformation analysis of compliant mechanisms. However, neglecting shear effects may reduce the accuracy of modeling compliant mechanisms. Inspired by the beam constraint model, this study takes a step further to develop a Timoshenko beam constraint model (TBCM) for initially curved beams to capture intermediate-range deflections under beam-end loading conditions. On this basis, the chained Timoshenko beam constraint model (CTBCM) is proposed for large deformation analysis and kinetostatic modeling of compliant mechanisms. The accuracy and feasibility of the proposed TBCM and CTBCM have been validated through modeling and analysis of curved beam mechanisms. Results indicate that TBCM and CTBCM are more accurate compared to the Euler beam constraint model (EBCM) and the chained Euler beam constraint model (CEBCM). Additionally, CTBCM has been found to offer computational advantages, as it requires fewer discrete elements to achieve convergence.

Sparse Convolution-Based 6D Pose Estimation for Robotic Bin-Picking With Point Clouds

Abstract

Estimating the orientation and position of objects is a crucial step in robotic bin-picking tasks. The challenge lies in the fact that, in real-world scenarios, a diverse array of objects is often randomly stacked, resulting in significant occlusion. This study introduces an innovative approach aimed at predicting 6D poses by processing point clouds through a two-stage neural network. In the initial stage, a network for scenes with low-textured environments is designed. Its purpose is to perform instance segmentation and provide an initial pose estimation. Entering the second stage, a pose refinement network is suggested. This network is intended to enhance the precision of pose prediction, building upon the output from the first stage. To tackle the challenge of resource-intensive annotation, a simulation technique is employed to generate a synthetic dataset. Additionally, a dedicated software tool has been developed to annotate real point cloud datasets. In practical experiments, our method demonstrated superior performance compared to baseline methods such as PointGroup and Iterative Closest Point. This superiority is evident in both segmentation accuracy and pose refinement. Moreover, practical grasping experiments have underscored the method’s efficacy in real-world industrial robot bin-picking applications. The results affirm its capability to successfully address the challenges produced by occluded and randomly stacked objects.

Read More

Journal of Mechanisms and Robotics Open Issues