Latest Papers

ASME Journal of Mechanisms and Robotics

    Bistable Aerial Transformer: A Quadrotor Fixed-Wing Hybrid That Morphs Dynamically Via Passive Soft Mechanism

    Abstract

    Aerial vehicle missions require navigating trade-offs during design, such as the range, speed, maneuverability, and size. Multi-modal aerial vehicles enable this trade-off to be negotiated during flight. This paper presents a Bistable Aerial Transformer (BAT) robot, a novel morphing hybrid aerial vehicle that switches between quadrotor and fixed-wing modes via rapid acceleration and without any additional actuation beyond those required for normal flight. The design features a compliant bistable mechanism made of thermoplastic polyurethane (TPU) that bears a large mass at the center of the robot’s body. When accelerating, inertial forces transition the vehicle between its stable modes, and a four-bar linkage connected to the bistable mechanism folds the vehicle’s wings in and out. The paper includes the full robot design and a comparison of the fabricated system to the elastodynamic simulation. Successful transitions between the two modes in mid-flight, as well as sustained flight in each mode indicate that the vehicle experiences higher agility in the quadrotor mode and higher flight efficiency in the fixed-wing mode, at an energy equivalent cost of only 2 s of flight time per pair of transitions. The vehicle demonstrates how compliant and bistable mechanisms can be integrated into future aerial vehicles for controllable self-reconfiguration for tasks such as surveillance and sampling that require a combination of maneuverability and long-distance flight.

    Read More

    Journal of Mechanisms and Robotics Open Issues