Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Hydrodynamic Performance Research of Underwater Oscillating Fin With the Compound Locomotion of Two Modes

Abstract

The fish-like propulsion robot is becoming a profound intelligent equipment due to its excellent swimming ability and good environmental adaptability. In this paper, we propose the oscillating fin based on the fish swimming mechanism, which is compounded with the locomotion modes of sway and yaw. The kinematic and dynamic models are established to study the locomotion mechanism of the oscillating fin. The hydrodynamic performance of underwater locomotion is investigated to analyze the velocity, the propulsive force, the pressure, the propulsive efficiency, and the vortices property. Finally, the experimental measurements of the robot with oscillating fin propulsion are carried out to analyze the underwater propulsion of the oscillating fin and the unsteady fluid flow with Strouhal number. The results illustrate that the propulsive force is fluctuating, and the velocity is increasing to the maximum value. The underwater propulsion velocity could reach 1.2 m/s in a period of 0.4 s. Besides, the high- and low-pressure regions change alternatively, and the fin deforming process illustrates the vortices property and the locomotion mechanism analyses. The propulsive efficiency of the oscillating fin with compound waves is increased by 11% compared with that of the one without deformation. The experiments of the robot prototype verify the numerical simulation, and the propulsive velocity with a period of 0.4 s is two times larger than that of a period of 0.8 s. The Strouhal number of each motion mode is obtained through theoretical and experimental analyses.

Read More

Journal of Mechanisms and Robotics Open Issues