Latest Papers

ASME Journal of Mechanisms and Robotics

  • A Small-Scale Integrated Jumping-Crawling Robot: Design, Modeling, and Demonstration
    on June 16, 2025 at 12:00 am

    AbstractThe small jumping-crawling robot improves its obstacle-crossing ability by selecting appropriate locomotion methods. However, current research on jumping-crawling robots remains focused on enhancing specific aspects of performance, and several issues still exist, including nonadjustable gaits, poor stability, nonadjustable jumping posture, and poor motion continuity. This article presents a small jumping-crawling robot with decoupled jumping and crawling mechanisms, offline adjustable gaits, autonomous self-righting, autonomous steering, and certain slope-climbing abilities. The crawling mechanism adopts a partially adjustable Klann six-bar linkage, which can generate four stride lengths and three gaits. The jumping mechanism is designed as a six-bar linkage with passive compliance, and an active clutch allows energy storage and release in any state. The autonomous self-righting mechanism enables the robot to self-right after tipping over, meanwhile providing support, steering, and posture adjustment functions. Prototype experiments show that the designed robot demonstrates good motion stability and can climb a 45 deg slope without tipping over. The robot shows excellent steering performance, with a single action taking 5 s and achieving a steering angle of 11.5 deg. It also exhibits good motion continuity, with an average recovery time of 12 s to return to crawling mode after a jump. Crawling experiments on rough terrain demonstrate the feasibility of applying the designed robot in real-world scenarios.

Hydrodynamic Performance Research of Underwater Oscillating Fin With the Compound Locomotion of Two Modes

Abstract

The fish-like propulsion robot is becoming a profound intelligent equipment due to its excellent swimming ability and good environmental adaptability. In this paper, we propose the oscillating fin based on the fish swimming mechanism, which is compounded with the locomotion modes of sway and yaw. The kinematic and dynamic models are established to study the locomotion mechanism of the oscillating fin. The hydrodynamic performance of underwater locomotion is investigated to analyze the velocity, the propulsive force, the pressure, the propulsive efficiency, and the vortices property. Finally, the experimental measurements of the robot with oscillating fin propulsion are carried out to analyze the underwater propulsion of the oscillating fin and the unsteady fluid flow with Strouhal number. The results illustrate that the propulsive force is fluctuating, and the velocity is increasing to the maximum value. The underwater propulsion velocity could reach 1.2 m/s in a period of 0.4 s. Besides, the high- and low-pressure regions change alternatively, and the fin deforming process illustrates the vortices property and the locomotion mechanism analyses. The propulsive efficiency of the oscillating fin with compound waves is increased by 11% compared with that of the one without deformation. The experiments of the robot prototype verify the numerical simulation, and the propulsive velocity with a period of 0.4 s is two times larger than that of a period of 0.8 s. The Strouhal number of each motion mode is obtained through theoretical and experimental analyses.

Read More

Journal of Mechanisms and Robotics Open Issues