Flexure pivots, which are widely used for precision mechanisms, generally have the drawback of presenting parasitic shifts accompanying their rotation. The known solutions for canceling these undesirable parasitic translations usually induce a loss in radial stiffness, a reduction of the angular stroke, and nonlinear moment–angle characteristics. This article introduces a novel family of kinematic structures based on coupled n-RRR planar parallel mechanisms, which presents exact zero parasitic shifts while alleviating the drawbacks of some known pivoting structures. Based on this invention, three symmetrical architectures have been designed and implemented as flexure-based pivots. The performance of the newly introduced pivots has been compared with two known planar flexure pivots having theoretically zero parasitic shift via Finite Element models and experiments performed on plastic mockups. The results show that the newly introduced flexure pivots are an order of magnitude radially stiffer than the considered pivots from the state-of-the-art while having equivalent angular strokes. To experimentally evaluate the parasitic shift of the novel pivots, one of the architectures was manufactured in titanium alloy using wire-cut electrical discharge machining. This prototype exhibits a parasitic shift under 1.5 µm over a rotation stroke of ±15 deg, validating the near-zero parasitic shift properties of the presented designs. These advantages are key to applications such as mechanical time bases, surgical robotics, or optomechanical mechanisms.
Journal of Mechanisms and Robotics Open Issues