This paper applies the kirigami technique to a non-rigid foldable tubular origami to make a rigid foldable tubular design, i.e., a radially closable kirigami (RC-kiri). The laminar emergent torsional (LET) compliant joint is applied to surrogate the crease, which makes the design applicable in practical engineering applications. By incorporating a non-flat folding design, the folding angles of each crease are minimized, leading to a reduction in the strain exerted on engineering materials. The kinetostatic theoretical model is constructed using the principle of virtual work, and its results are compared with those obtained from a simulation model in finite element analysis (FEA). A 3D printed physical model is tested to obtain the relationship between forces and displacements. FEA and experimental results match with theoretical findings. This study builds a bridge between origami and kirigami and expands the application of LET joints to the fabrication of tubular kirigami.
Journal of Mechanisms and Robotics Open Issues