Latest Papers

ASME Journal of Mechanisms and Robotics

  • Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
    on September 24, 2024 at 12:00 am

    AbstractDielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible film of the DEA. In this paper, a novel class of 2D profile linear DEAs (butterfly- and X-shaped linear DEAs) with compact structure is introduced, which, employing negative-stiffness mechanisms, can largely increase the stroke of the actuators. Then, a dynamic model of the proposed amplified-stroke linear DEAs (ASL-DEAs) is developed and used to predict the actuator stroke. The fabrication process of linear DEAs is presented. This, using compliant joints, 3D-printed links, and dielectric elastomer, allows for rapid and affordable production. The experimental validation of the butterfly- and X-shaped linear DEAs proved capable of increasing the stroke up to 32.7% and 24.0%, respectively, compared with the conventional design employing springs and constant weights. Finally, the dynamic model is validated against the experimental data of stroke amplitude and output force; errors smaller than 10.5% for a large stroke amplitude (60% of maximum stroke) and 10.5% on the output force are observed.

A Multi-Objective Optimal Design Method for Gravity Compensators With Consideration of Minimizing Joint Reaction Forces

Abstract

This paper presents a multi-objective optimal design method for gravity compensators with consideration of minimizing the joint reaction forces. High performance of the gravity compensation is achieved while the joint reaction forces are kept to a minimum. In this method, the ratio of the compensated torque to the uncompensated torque and the maximum value of the joint reaction forces are formulated as cost functions in the optimization problem, which is solved by adopting the Pareto front of multiple fitness functions with a genetic algorithm. This work takes a spring four-bar mechanism as a gravity compensator for a case study. The theoretical models of a gravity compensator and a robot manipulator show that the proposed multi-objective optimal design allows for the achievement of smaller joint reaction forces than the original single-objective optimal design, while their gravity compensation performances are relatively the same. Moreover, a prototype of a 0.2-kg gravity compensator realized from the proposed method was also built. An experimental study with this prototype showed that the measured motor torque was reduced by up to 93% within a range of 3π/4.

Read More

Journal of Mechanisms and Robotics Open Issues