Latest Papers

ASME Journal of Mechanisms and Robotics

  • Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
    on September 24, 2024 at 12:00 am

    AbstractDielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible film of the DEA. In this paper, a novel class of 2D profile linear DEAs (butterfly- and X-shaped linear DEAs) with compact structure is introduced, which, employing negative-stiffness mechanisms, can largely increase the stroke of the actuators. Then, a dynamic model of the proposed amplified-stroke linear DEAs (ASL-DEAs) is developed and used to predict the actuator stroke. The fabrication process of linear DEAs is presented. This, using compliant joints, 3D-printed links, and dielectric elastomer, allows for rapid and affordable production. The experimental validation of the butterfly- and X-shaped linear DEAs proved capable of increasing the stroke up to 32.7% and 24.0%, respectively, compared with the conventional design employing springs and constant weights. Finally, the dynamic model is validated against the experimental data of stroke amplitude and output force; errors smaller than 10.5% for a large stroke amplitude (60% of maximum stroke) and 10.5% on the output force are observed.

Constant Force Spring System With a Spiral Accuracy Assessment

Abstract

This paper is an extension of the original research contained in the paper “Constant Force Spring System With a Spiral” by Richard B. Hetnarski, published in J. Mech. Rob., 12, Dec. 2020. The topic of that paper is the introduction and description of a new mechanism which allows to transform the linearly changing force exerted by a helical spring into a constant force. The most important part of the system is a new spiral of which the differential equation was derived and solved, and all this is published in that previous paper. That paper contains the detailed description of the theory of the mechanism and the analysis of its operation. There are also provided examples of a few possible applications. A physical model of the system was built, and its testing showed the system works in agreement with the theory. However, the system is not completely accurate, i.e., the force Fo remains not entirely constant during winding/unwinding of the cord. The present paper deals with this inaccuracy which is discussed and evaluated in depth by analytical and numerical methods, and the way for it to be decreased or eliminated is described. The present paper, together with the previous paper, constitutes the full presentation of the mechanism and should not be separated one from the other. Since the present paper is a continuation of the previous paper, please study the paper (Hetnarski, R. B., 2020, “Constant Force Spring System With a Spiral,” ASME J. Mech. Rob., 12(6), p. 061018. 10.1115/1.4047982), before reading the present paper.

Read More

Journal of Mechanisms and Robotics Open Issues