Latest Papers

ASME Journal of Mechanisms and Robotics

  • Design of Reconfigurable Articulated Walking Mechanisms for Diverse Motion Behaviors
    on March 20, 2025 at 12:00 am

    AbstractLegged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of novel reconfigurable parallel linkages that not only produce different walking patterns but also realize behaviors beyond locomotion. Experiments with an implemented wearable device able to guide the lower extremity through multiple human-like walking trajectories are presented and the preliminary results validate the proposed approach.

  • Modeling, Kinematics, and Dynamics of a Rigid-Flexible Coupling Spring-Cable-Driven Parallel Robot
    on March 20, 2025 at 12:00 am

    AbstractConventional parallel robots are made of rigid materials for the purpose of fast and accurate localization, exhibiting limited performance in large-scale operations. Inspired by the softness and natural compliance of biological systems, this article proposes a rigid-flexible coupling cable-driven parallel robot. The concept of flexible cable and spring hybrid and working principle are introduced. The kinematics of single module and multiple modules connected in series are analyzed and equations are given, and the Lagrange equation is used to establish dynamic models. Finally, two methods are used to validate the kinematics and dynamics. One is to draw the specific structure with the posture of the end-effector and measure the cable length to compare it with the analytical solution in the kinematic model. The other is to build the structure and joint characteristics in simulink, given the posture of the end-effector and the external force/torque, the cable length and the force applied are compared with those obtained from the dynamic model. The reasonableness of the mechanism and the feasibility of the kinematic and dynamic models are verified.

Closed-Form Dynamic Modeling and Performance Evaluation of a 4-Degrees-of-Freedom Parallel Driving Mechanism

Abstract

Kinematic estimations and dynamic performance assessments are fundamental theoretical issues to realize the mechanism from conceptual design to engineering application. In this article, the closed-form dynamic formulations of a 4-degrees-of-freedom (DoFs) parallel driving mechanism are derived by combining the Lagrange method and the virtual work principle. The selection principle of generalized coordinates and the steps for inverse dynamics modeling of the manipulator are proposed. Simulation results verify the correctness of the dynamic model, and a physical prototype has been built. Based on the dynamic modeling, the concise algebraic expression of the operational space inertia matrix of the parallel driving mechanism is deduced. Because the translation and rotation degrees-of-freedom are inconsistent in the operational space, the Jacobian matrix is adopted to map the inertia matrix from the operational space to the joint space. Based on the inertia matrix in joint space, the average energy transfer efficiency (AETE) index is proposed. Finally, two control techniques for the manipulator implementable in joint space are compared. The AETE index and dynamic modeling method suggested in this article can be further used in other manipulators for dynamic analysis and motion system design.

Read More

Journal of Mechanisms and Robotics Open Issues