Latest Papers

ASME Journal of Mechanisms and Robotics

  • A Small-Scale Integrated Jumping-Crawling Robot: Design, Modeling, and Demonstration
    on June 16, 2025 at 12:00 am

    AbstractThe small jumping-crawling robot improves its obstacle-crossing ability by selecting appropriate locomotion methods. However, current research on jumping-crawling robots remains focused on enhancing specific aspects of performance, and several issues still exist, including nonadjustable gaits, poor stability, nonadjustable jumping posture, and poor motion continuity. This article presents a small jumping-crawling robot with decoupled jumping and crawling mechanisms, offline adjustable gaits, autonomous self-righting, autonomous steering, and certain slope-climbing abilities. The crawling mechanism adopts a partially adjustable Klann six-bar linkage, which can generate four stride lengths and three gaits. The jumping mechanism is designed as a six-bar linkage with passive compliance, and an active clutch allows energy storage and release in any state. The autonomous self-righting mechanism enables the robot to self-right after tipping over, meanwhile providing support, steering, and posture adjustment functions. Prototype experiments show that the designed robot demonstrates good motion stability and can climb a 45 deg slope without tipping over. The robot shows excellent steering performance, with a single action taking 5 s and achieving a steering angle of 11.5 deg. It also exhibits good motion continuity, with an average recovery time of 12 s to return to crawling mode after a jump. Crawling experiments on rough terrain demonstrate the feasibility of applying the designed robot in real-world scenarios.

Origami-Inspired Design of a Single-Degree-of-Freedom Reconfigurable Wing With Lockable Mechanisms

Abstract

The morphing wing can enable the aircraft to maintain good flight performance in different missions or flight stages, which has enjoyed much attention in recent research. However, it is difficult to design the wing with multiple configurations and lightweight. Inspired by the origami art, a reconfigurable mechanism with a single-degree-of-freedom (single-DOF) is introduced to the morphing wing design in this paper. The bending configuration, the deployable configuration, and the configuration transformation of the reconfigurable mechanism are respectively analyzed. The lengths of some links are also optimized according to the motion requirements. Specific kinematic pairs of the reconfigurable mechanism are required to have the locking function. Therefore, a reliable “plug-in” type lockable mechanism is designed and its working performance is verified by comparing the analytical model and the finite element method model. Finally, by assembling the reconfigurable mechanism with the ribs, the reconfigurable wing which can realize the arbitrary transformation of four configurations under a single drive mode can be obtained.

Read More

Journal of Mechanisms and Robotics Open Issues