Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Six-Bar Linkages With Compliant Mechanisms for Programmable Mechanical Structures

Abstract

Programmable mechanical structures are formed by autonomous and adaptive cells and can reproduce meshes known from the finite element method. Furthermore, they can change their structure not only through morphing, but also by self-reconfiguration of the cells. A crucial component of the cells, which can preserve the underlying geometry of a triangular mesh, are six-bar linkages. The main part of the present contribution concerns the six-bar linkages as a fully 3D-printable compliant mechanism where each revolute joint of the six-bar linkage is replaced with a notch flexure hinge with the circular contour. The utilization of notch flexure hinges presents two significant drawbacks. First, notch flexure hinges do not maintain the center of rotation. Second, although compliance is an inherent and desirable characteristic of flexural hinges, it gives rise to secondary or parasitic motion. The compliance subsequently lead to alterations in the underlying geometry of a triangular mesh. For self-reconfiguration of the cells, an efficient model is needed to predict the positioning errors. Therefore, the flexure hinge is represented by three distinct models, namely a finite element model, a beam model, and a simplified linearized model based on translational and rotational spring elements. These models are compared and evaluated in succession first to identify the parameters of the simplified model and later on, the simplified model is used to show the deviations of a medium-scaled programmable structure with respect to the idealized behavior. The current work brings us closer to both the development of programmable mechanical structures and the prediction of positioning errors during self-reconfiguration.

Read More

Journal of Mechanisms and Robotics Open Issues