Latest Papers

ASME Journal of Mechanisms and Robotics

  • Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
    on September 24, 2024 at 12:00 am

    AbstractDielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible film of the DEA. In this paper, a novel class of 2D profile linear DEAs (butterfly- and X-shaped linear DEAs) with compact structure is introduced, which, employing negative-stiffness mechanisms, can largely increase the stroke of the actuators. Then, a dynamic model of the proposed amplified-stroke linear DEAs (ASL-DEAs) is developed and used to predict the actuator stroke. The fabrication process of linear DEAs is presented. This, using compliant joints, 3D-printed links, and dielectric elastomer, allows for rapid and affordable production. The experimental validation of the butterfly- and X-shaped linear DEAs proved capable of increasing the stroke up to 32.7% and 24.0%, respectively, compared with the conventional design employing springs and constant weights. Finally, the dynamic model is validated against the experimental data of stroke amplitude and output force; errors smaller than 10.5% for a large stroke amplitude (60% of maximum stroke) and 10.5% on the output force are observed.

Motion Performance Study of 2UPR-1RPS/2R Hybrid Robot Based on Kinematics, Dynamics, and Stiffness Modeling

Abstract

The unique structural characteristics of hybrid robots, such as few degrees-of-freedom (DOF) and redundant constraints, lead to a series of challenges in the establishment of theoretical models. However, these theoretical models are indispensable parts of motion control. Therefore, this paper focuses on establishing the kinematics, dynamics, and stiffness models for an Exechon-like hybrid robot, which are then used for error compensation and velocity planning to improve the robot’s motion performance. First, the kinematic model is derived through intermediate parameters and the kinematics equivalent chains. By analyzing the parasitic motion due to few DOF, the redundant equations in the model are eliminated to obtain the solution of inverse kinematics. Second, based on the beam element, the optimal equivalent configuration of the moving platform which connects the parallel part and serial part is determined, and then an entire equivalent structure of the robot is formed. It helps establish the stiffness model by using the matrix structure analysis method. Next, the dynamic model is established by combining the Newton–Euler method with co-deformation theory to solve the underdetermined dynamic equations caused by redundant constraints. Finally, the compensation method is designed based on the stiffness model and kinematic model to improve the end positioning accuracy of the robot; the velocity planning algorithm is designed based on the dynamic model and kinematic model to enhance the smoothness of the robot motion. The methods proposed in this paper are also of referential significance to other Exechon-like hybrid robots.

Read More

Journal of Mechanisms and Robotics Open Issues