Latest Papers

ASME Journal of Mechanisms and Robotics

  • A Small-Scale Integrated Jumping-Crawling Robot: Design, Modeling, and Demonstration
    on June 16, 2025 at 12:00 am

    AbstractThe small jumping-crawling robot improves its obstacle-crossing ability by selecting appropriate locomotion methods. However, current research on jumping-crawling robots remains focused on enhancing specific aspects of performance, and several issues still exist, including nonadjustable gaits, poor stability, nonadjustable jumping posture, and poor motion continuity. This article presents a small jumping-crawling robot with decoupled jumping and crawling mechanisms, offline adjustable gaits, autonomous self-righting, autonomous steering, and certain slope-climbing abilities. The crawling mechanism adopts a partially adjustable Klann six-bar linkage, which can generate four stride lengths and three gaits. The jumping mechanism is designed as a six-bar linkage with passive compliance, and an active clutch allows energy storage and release in any state. The autonomous self-righting mechanism enables the robot to self-right after tipping over, meanwhile providing support, steering, and posture adjustment functions. Prototype experiments show that the designed robot demonstrates good motion stability and can climb a 45 deg slope without tipping over. The robot shows excellent steering performance, with a single action taking 5 s and achieving a steering angle of 11.5 deg. It also exhibits good motion continuity, with an average recovery time of 12 s to return to crawling mode after a jump. Crawling experiments on rough terrain demonstrate the feasibility of applying the designed robot in real-world scenarios.

Design of a Novel Flexible Spherical Hinge and Its Application in Continuum Robot

Abstract

Compliant mechanisms, which can be integrally machined and without assembly, are well suited as joints for continuum robots (CRs), but how to incorporate the advantages of the compliant mechanism into the arm design is a key issue in this work. In this paper, a novel type of flexible spherical-hinged (FSH) joint composed of tetrahedron elements with a fixed virtual remote center of motion (RCM) at the bottom is proposed, and then extended to the CR and end-effector. In the arm design, the error compensation principle is used to offset the parasitic motion of the CR under external load (pressure and torque) and improve the bending and torsional isotropy of the arm through different series combinations, and then the stiffness model of the FSH joint and the statics model of the CR are developed using the 3D chain pseudo-rigid body model (3D-CPRBM) and tested. The results show that the 3D-CPRBM can effectively predict the deformation of the FSH joint and the CR. Moreover, the maximum standard deviation of the bending angle of the FSH joint in each direction is only 0.26 deg, the repeatable positioning accuracy of the CR can reach 0.5 deg, and the end-effector has good gripping ability and self-adaptive capability.

Read More

Journal of Mechanisms and Robotics Open Issues