Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Analysis and Validation of a Flexible Limb/Cable Hybrid-Driven Parallel Continuum Manipulator

Abstract

Cable-driven parallel manipulators and parallel continuum manipulators have attracted increasing attention in pick-and-place manipulation, owing to their low inertia and high safety. In cable-driven parallel robots, cables are utilized to control a moving platform, whereas parallel continuum manipulators employ flexible limbs. By combing these two types of mechanisms, the authors propose a novel flexible limb/cable hybrid-driven parallel continuum manipulator (HDPCM). The flexible limbs, equipped with their ability to withstand pushing forces applied on the moving platform, are a critical component of the HDPCM. Meanwhile, the cables, with their proficiency to modulate the shape of the flexible limbs and endure some of the pulling force, reduce the possibility of large divergence in flexible limbs. This results in an improved reachable workspace and load capacity for the manipulator. To predict the configuration of the proposed manipulator, an efficient kinetostatics analysis is given, utilizing a discretization-based approach. Among the infinitely many solutions to the inverse problem, the configuration with minimal potential energy is selected as the optimal solution. Finally, a prototype is fabricated, and validation experiments are conducted, which demonstrate that the prototype exhibits acceptable positioning accuracy and passive compliance. Furthermore, the proposed manipulator is validated to possess relatively superior performance in the workspace and load capacity.

Read More

Journal of Mechanisms and Robotics Open Issues