Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Multi-Furcation Variations of Two Novel Double-Centered Mechanisms Based on Higher Order Kinematic Analyses and Singular Value Decomposition

Abstract

This paper explores a class of extended double-centered linkages and presents two novel multi-bifurcated double-centered metamorphic and reconfigurable mechanisms. Higher order kinematic analyses and singular value decomposition are combined to demonstrate the characteristics of multi-furcation and to reveal motion branch transformation. These findings show that the presented double-centered linkages are able to evolve to distinct motion branches including two spherical 4R linkages, line-symmetric Bricard linkage or Bennett linkage. Furthermore, by exploring the local properties of singular configurations on geometric constraints and algebraic relationships, a systematic approach for the synthesis of the singular configurations can be designed to discover more novel multi-bifurcated metamorphic and reconfigurable mechanisms.

Read More

Journal of Mechanisms and Robotics Open Issues