Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Conceptual Design of a Novel Particle-Based Soft Grasping Gripper


Soft grippers show adaptability and flexibility in grasping irregularly shaped and fragile objects. However, the low loading capacity and less deformation limit the soft gripper for developing large-scale applications. To overcome these limitations, we propose a new concept of a soft actuator with engineered smart particles. The proposed soft actuator is a dual-chamber programmable structure made from an elastic membrane filled with different particles, which can be driven by expanding particle volume or flexible membrane shrinking. Compared to traditional pneumatic or particle-jamming actuators, we use a combination of granular materials and smart materials, which delivers better active performances of large-scale deformation and variable stiffness. The coupled numerical model of the discrete element method and the finite element method is used to demonstrate the concept. The results indicated that the proposed soft gripper achieves the functionality of large deformation by a shrinking membrane or expanding particles. By controlling different design parameters, the actuator bends up to 138 deg, and the stiffness is up to a maximum of nine times of the pneumatic actuator. Additionally, the bending angle and deflections of the gripper actuator first increase and then drop down with increasing particle diameter ratio, actuator length, and elastic modulus of membrane material. Hence, the choice of different parameters must be in a specific range to achieve the required deformation. In conclusion, the soft-grasping gripper actuator can realize large bending deformation and shows potential for developing soft grippers in multi-scale physical scenarios.

Read More

Journal of Mechanisms and Robotics Open Issues