Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Kinetic Analysis of Active Omni Wheel With Barrel-Shaped Rollers for Avoiding Slippage and Vibration

Abstract

Omnidirectional mobility is required for the efficient movement of transport vehicles in factories and warehouses. To meet this requirement, the active omni wheel with barrel-shaped rollers (AOWBR) was previously proposed. The barrel-shaped rollers are arranged around the outer circumference of the main wheel of the AOWBR. This structure is expected to be effective in suppressing vibration during vehicle movement. The transmission roller drives the outer roller via a friction drive, which actively moves the AOWBR in the lateral direction. However, the friction drive may cause slippage between the transmission roller and the outer roller. To solve this problem, this study investigates the effects of the design parameters for an AOWBR on vibration and wheel slippage. The kinetic models of the wheel main body, transmission roller, and outer roller are established. Then, simulations are carried out using the kinetic models for various structural parameter values. The simulation results show that a softer rubber block installed in the support mechanism of the outer roller contributes to reduce wheel slippage but cause larger vibration, and that a larger setting angle between the transmission and outer rollers contributes to reduce slippage and vibration. Finally, comparison experiments are conducted on two types of prototype to verify the simulation results.

Read More

Journal of Mechanisms and Robotics Open Issues