Latest Papers

ASME Journal of Mechanisms and Robotics

  • Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
    on September 24, 2024 at 12:00 am

    AbstractDielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible film of the DEA. In this paper, a novel class of 2D profile linear DEAs (butterfly- and X-shaped linear DEAs) with compact structure is introduced, which, employing negative-stiffness mechanisms, can largely increase the stroke of the actuators. Then, a dynamic model of the proposed amplified-stroke linear DEAs (ASL-DEAs) is developed and used to predict the actuator stroke. The fabrication process of linear DEAs is presented. This, using compliant joints, 3D-printed links, and dielectric elastomer, allows for rapid and affordable production. The experimental validation of the butterfly- and X-shaped linear DEAs proved capable of increasing the stroke up to 32.7% and 24.0%, respectively, compared with the conventional design employing springs and constant weights. Finally, the dynamic model is validated against the experimental data of stroke amplitude and output force; errors smaller than 10.5% for a large stroke amplitude (60% of maximum stroke) and 10.5% on the output force are observed.

Design and Evaluation of a Smooth-Locking-Based Customizable Prosthetic Knee Joint

Abstract

Limb loss affects many people from a variety of backgrounds around the world. The most advanced commercially available prostheses for transfemoral amputees are fully active (powered) designs but remain very expensive and unavailable in the developing world. Consequently, improvements of low-cost, passive prostheses have been made to provide high-quality rehabilitation to amputees of any background. This study explores the design and evaluation of a smooth-locking-based bionic knee joint to replicate the swing phase of the human gait cycle. The two-part design was based on the condyle geometry of the interface between the femur and tibia obtained from magnetic resonance (MR) images of the human subject, while springs were used to replace the anterior and posterior cruciate ligaments. A flexible four-bar linkage mechanism was successfully achieved to provide not only rotation along a variable instantaneous axis but also slight translation in the sagittal plane, similar to the anatomical knee. We systematically evaluated the effects of different spring configurations in terms of stiffness, position, and relaxion length on knee flexion angles during walking. A good replication of the swing phase was achieved by relatively high stiffness and increased relaxation length of springs. The stance phase of the gait cycle was improved compared to some models but remained relatively flat, where further verification should be conducted. In addition, 3D printing technique provides a convenient design and manufacturing process, making the prosthesis customizable for different individuals based on subject-specific modeling of the amputee’s knee.

Read More

Journal of Mechanisms and Robotics Open Issues