Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Design and Evaluation of a Smooth-Locking-Based Customizable Prosthetic Knee Joint

Abstract

Limb loss affects many people from a variety of backgrounds around the world. The most advanced commercially available prostheses for transfemoral amputees are fully active (powered) designs but remain very expensive and unavailable in the developing world. Consequently, improvements of low-cost, passive prostheses have been made to provide high-quality rehabilitation to amputees of any background. This study explores the design and evaluation of a smooth-locking-based bionic knee joint to replicate the swing phase of the human gait cycle. The two-part design was based on the condyle geometry of the interface between the femur and tibia obtained from magnetic resonance (MR) images of the human subject, while springs were used to replace the anterior and posterior cruciate ligaments. A flexible four-bar linkage mechanism was successfully achieved to provide not only rotation along a variable instantaneous axis but also slight translation in the sagittal plane, similar to the anatomical knee. We systematically evaluated the effects of different spring configurations in terms of stiffness, position, and relaxion length on knee flexion angles during walking. A good replication of the swing phase was achieved by relatively high stiffness and increased relaxation length of springs. The stance phase of the gait cycle was improved compared to some models but remained relatively flat, where further verification should be conducted. In addition, 3D printing technique provides a convenient design and manufacturing process, making the prosthesis customizable for different individuals based on subject-specific modeling of the amputee’s knee.

Read More

Journal of Mechanisms and Robotics Open Issues