Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Design and Analysis of a Reconfigurable Hybrid Robot for Machining of Large Workpieces

Abstract

Large workpieces are important components of core equipment in aerospace and other fields, where the machining mainly focuses on the surfaces and inner cavities. However, it may be unsuitable for existing machining robots to directly achieve integrated machining, that is, not only the high-precision surface machining but also the machining of different inner cavities in a limited space. To satisfy these machining requirements, a new reconfigurable hybrid robot (RHR) is proposed, called the 3PRR-3PSS-UPU RHR, for machining the surface and inner cavity of large workpieces (where P, P, R, S, and U stand for the actuated prismatic joint, passive prismatic joint, revolute joint, spherical joint, and universal joint, respectively). The proposed RHR consists of two parallel manipulators (PMs), in which one is a spatial 3PRR PM with one translational degree-of-freedom (DOF) and the other is a 3PSS-UPU reconfigurable PM (RPM) with different configurations of two rotational and one translational (2R1T) DOFs using locking equipment, which is the main advantage of the designed robot. The inverse kinematics and singularities of two PMs are analyzed. The stiffness performance of the spatial 3PRR PM is compared with that of a moving slider with one translational DOF. By evaluating the workspace and motion/force transmissibility, the kinematic performance of two PMs is presented using several local and global indices, followed by the dimensional optimization of link parameters. Based on the structural characteristics and excellent performance, it can be inferred that the 3PRR-3PSS-UPU RHR has great potential for machining large workpieces.

Read More

Journal of Mechanisms and Robotics Open Issues