Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Design and Analysis of a Reconfigurable Hybrid Robot for Machining of Large Workpieces

Abstract

Large workpieces are important components of core equipment in aerospace and other fields, where the machining mainly focuses on the surfaces and inner cavities. However, it may be unsuitable for existing machining robots to directly achieve integrated machining, that is, not only the high-precision surface machining but also the machining of different inner cavities in a limited space. To satisfy these machining requirements, a new reconfigurable hybrid robot (RHR) is proposed, called the 3PRR-3PSS-UPU RHR, for machining the surface and inner cavity of large workpieces (where P, P, R, S, and U stand for the actuated prismatic joint, passive prismatic joint, revolute joint, spherical joint, and universal joint, respectively). The proposed RHR consists of two parallel manipulators (PMs), in which one is a spatial 3PRR PM with one translational degree-of-freedom (DOF) and the other is a 3PSS-UPU reconfigurable PM (RPM) with different configurations of two rotational and one translational (2R1T) DOFs using locking equipment, which is the main advantage of the designed robot. The inverse kinematics and singularities of two PMs are analyzed. The stiffness performance of the spatial 3PRR PM is compared with that of a moving slider with one translational DOF. By evaluating the workspace and motion/force transmissibility, the kinematic performance of two PMs is presented using several local and global indices, followed by the dimensional optimization of link parameters. Based on the structural characteristics and excellent performance, it can be inferred that the 3PRR-3PSS-UPU RHR has great potential for machining large workpieces.

Read More

Journal of Mechanisms and Robotics Open Issues