Latest Papers

ASME Journal of Mechanisms and Robotics

  • An Improved Dual Quaternion Dynamic Movement Primitives-Based Algorithm for Robot-Agnostic Learning and Execution of Throwing Tasks
    on May 9, 2025 at 12:00 am

    AbstractInspired by human nature, roboticists have conceived robots as tools meant to be flexible, capable of performing a wide variety of tasks. Learning from demonstration methods allow us to “teach” robots the way we would perform tasks, in a versatile and adaptive manner. Dynamic movement primitives (DMP) aims for learning complex behaviors in such a way, representing tasks as stable, well-understood dynamical systems. By modeling movements over the SE(3) group, modeled primitives can be generalized for any robotic manipulator capable of full end-effector 3D movement. In this article, we present a robot-agnostic formulation of discrete DMP based on the dual quaternion algebra, oriented to modeling throwing movements. We consider adapted initial and final poses and velocities, all computed from a projectile kinematic model and from the goal at which the projectile is aimed. Experimental demonstrations are carried out in both a simulated and a real environment. Results support the effectiveness of the improved method formulation.

  • Chained Timoshenko Beam Constraint Model With Applications in Large Deflection Analysis of Compliant Mechanism
    on May 9, 2025 at 12:00 am

    AbstractAccurately analyzing the large deformation behaviors of compliant mechanisms has always been a significant challenge in the design process. The classical Euler–Bernoulli beam theory serves as the primary theoretical basis for the large deformation analysis of compliant mechanisms. However, neglecting shear effects may reduce the accuracy of modeling compliant mechanisms. Inspired by the beam constraint model, this study takes a step further to develop a Timoshenko beam constraint model (TBCM) for initially curved beams to capture intermediate-range deflections under beam-end loading conditions. On this basis, the chained Timoshenko beam constraint model (CTBCM) is proposed for large deformation analysis and kinetostatic modeling of compliant mechanisms. The accuracy and feasibility of the proposed TBCM and CTBCM have been validated through modeling and analysis of curved beam mechanisms. Results indicate that TBCM and CTBCM are more accurate compared to the Euler beam constraint model (EBCM) and the chained Euler beam constraint model (CEBCM). Additionally, CTBCM has been found to offer computational advantages, as it requires fewer discrete elements to achieve convergence.

Stiffness Modeling and Deformation Analysis of Parallel Manipulators Based on the Principal Axes Decomposition of Compliance Matrices

Abstract

This paper presents a general equivalent approach to solve the stiffness modeling or load-deformation problem of non-redundant parallel mechanisms. Based on the principal axes decomposition of structure compliance matrices, an equivalent six-degrees-of-freedom (6-DOFs) serial mechanism is established to approximate the load-deformation behavior of each flexible link in the mechanism. Hence, each limb of the parallel mechanism can be equivalent to a serial redundant rigid body mechanism with passive elastic joints, and the load-deformation problem can be transformed to the equilibrium configuration calculation of the equivalent mechanism. The main advantage of the proposed method is that the robotic kinematics and statics, rather than the elastic mechanics, can be directly adopted to solve the equilibrium configuration of the parallel mechanism under external load. Besides, a closed form solution of the corresponding deformation can be obtained, which can be solved by the gradient-based searching algorithm. Therefore, the final deformation will no longer be linear to the external load, which makes this method more accurate and more suitable for the deformation prediction and compensation in real industrial working conditions. In order to verify the effectiveness and correctness of this method, a 3PRRU parallel manipulator will be introduced as an example, to compare the load-deformation results with the finite element analysis (FEA) simulation and matrix calculation methods, so the nonlinearity feature can be shown in an intuitive manner.

Read More

Journal of Mechanisms and Robotics Open Issues