Latest Papers

ASME Journal of Mechanisms and Robotics

  • Integrated Wheel–Foot–Arm Design of a Mobile Platform With Linkage Mechanisms
    on March 20, 2024 at 12:00 am

    AbstractInspired by lizards, a novel mobile platform with revolving linkage legs is proposed. The platform consists of four six-bar bipedal modules, and it is designed for heavy transportation on unstructured terrain. The platform possesses smooth-wheeled locomotion and obstacle-adaptive legged locomotion to enhance maneuverability. The kinematics of the six-bar bipedal modules is analyzed using the vector loop method, subsequently ascertaining the drive scheme. The foot trajectory compensation curve is generated using the fixed-axis rotation contour algorithm, which effectively reduces the centroid fluctuation and enables seamless switching between wheels and legs. When encountering obstacles, the revolving linkage legs act as climbing arms, facilitating seamless integration of wheel, foot, and arm. A physical prototype is developed to test the platform on three typical terrains: flat terrain, slope, and vertical obstacle. The experimental results demonstrated the feasibility of the platform structure. The platform can climb obstacles higher than its own height without adding extra actuation.

Self-Aligning Rotational Latching Mechanisms: Optimal Geometry for Mechanical Robustness

Abstract

In concurrent work, we introduced a novel robotic package delivery system latching intelligent modular mobility system (LIMMS). Each LIMMS end effector requires a small, lightweight latching mechanism for pre-manufactured containers, such as cardboard boxes. In order to effectively process a high volume of packages, aligning the latching mechanism quickly and reliably is critical. Instead of depending on highly accurate controllers for alignment, we propose a novel self-aligning rotational mechanism to increase the system’s tolerance to misalignment. The radial latching design consists of evenly spaced blades that rotate into slots cut into the box. When misaligned, the blades contact the edges of the engagement slots, generating a self-correcting force that passively centers the blades with the slot pattern. This paper introduces a mathematical framework with closed form expressions to quantify error tolerance for these mechanisms. Through our mathematical and optimization analyses, it is shown that a two-blade design can tolerate a maximum misalignment of three times the radius to the blade tips, much larger than commonly used designs with three or more blade-like contacts. Our approach can be generalized for a class of rotational latching mechanisms with any number of blades. Utilizing this theory, a design process is laid out for developing an optimal self-aligning rotational latching mechanism given desired parameters and task constraints. With this methodology, we designed, manufactured, and verified the effectiveness of both two-blade and three-blade self-aligning in practical experiments.

Read More

Journal of Mechanisms and Robotics Open Issues