Latest Papers

ASME Journal of Mechanisms and Robotics

  • An Improved Dual Quaternion Dynamic Movement Primitives-Based Algorithm for Robot-Agnostic Learning and Execution of Throwing Tasks
    on May 9, 2025 at 12:00 am

    AbstractInspired by human nature, roboticists have conceived robots as tools meant to be flexible, capable of performing a wide variety of tasks. Learning from demonstration methods allow us to “teach” robots the way we would perform tasks, in a versatile and adaptive manner. Dynamic movement primitives (DMP) aims for learning complex behaviors in such a way, representing tasks as stable, well-understood dynamical systems. By modeling movements over the SE(3) group, modeled primitives can be generalized for any robotic manipulator capable of full end-effector 3D movement. In this article, we present a robot-agnostic formulation of discrete DMP based on the dual quaternion algebra, oriented to modeling throwing movements. We consider adapted initial and final poses and velocities, all computed from a projectile kinematic model and from the goal at which the projectile is aimed. Experimental demonstrations are carried out in both a simulated and a real environment. Results support the effectiveness of the improved method formulation.

  • Chained Timoshenko Beam Constraint Model With Applications in Large Deflection Analysis of Compliant Mechanism
    on May 9, 2025 at 12:00 am

    AbstractAccurately analyzing the large deformation behaviors of compliant mechanisms has always been a significant challenge in the design process. The classical Euler–Bernoulli beam theory serves as the primary theoretical basis for the large deformation analysis of compliant mechanisms. However, neglecting shear effects may reduce the accuracy of modeling compliant mechanisms. Inspired by the beam constraint model, this study takes a step further to develop a Timoshenko beam constraint model (TBCM) for initially curved beams to capture intermediate-range deflections under beam-end loading conditions. On this basis, the chained Timoshenko beam constraint model (CTBCM) is proposed for large deformation analysis and kinetostatic modeling of compliant mechanisms. The accuracy and feasibility of the proposed TBCM and CTBCM have been validated through modeling and analysis of curved beam mechanisms. Results indicate that TBCM and CTBCM are more accurate compared to the Euler beam constraint model (EBCM) and the chained Euler beam constraint model (CEBCM). Additionally, CTBCM has been found to offer computational advantages, as it requires fewer discrete elements to achieve convergence.

Designing and Analyzing Multistable Mechanisms Using Quadrilateral Boundary Rigid Origami

Abstract

Multistable origami and its snapping behaviors between the folded states have attracted scientists’ and engineers’ attention as the building block for the design of mechanical devices and metamaterials. We propose a novel method for designing origami-based multistable structures, by which we mean (1) to obtain the prescribed overall motion and (2) to control the stiffness of snapping provided by the elastic strain. We solve this design problem by first representing the desired motion with linkage structures with quadrilateral holes, called the frames, and then filling the frames with origami modules, called quadrilateral boundary modules. By introducing an intentional incompatibility between the motions of the frames and the modules, we design the snapping behavior that follows the linkage motion. We provide the representation model to evaluate the incompatibility and propose an optimization-based framework for the design. We also validate our design applied to a Sarrus linkage through bar-and-hinge analysis and experiments using physical prototypes.

Read More

Journal of Mechanisms and Robotics Open Issues