Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Designing and Analyzing Multistable Mechanisms Using Quadrilateral Boundary Rigid Origami


Multistable origami and its snapping behaviors between the folded states have attracted scientists’ and engineers’ attention as the building block for the design of mechanical devices and metamaterials. We propose a novel method for designing origami-based multistable structures, by which we mean (1) to obtain the prescribed overall motion and (2) to control the stiffness of snapping provided by the elastic strain. We solve this design problem by first representing the desired motion with linkage structures with quadrilateral holes, called the frames, and then filling the frames with origami modules, called quadrilateral boundary modules. By introducing an intentional incompatibility between the motions of the frames and the modules, we design the snapping behavior that follows the linkage motion. We provide the representation model to evaluate the incompatibility and propose an optimization-based framework for the design. We also validate our design applied to a Sarrus linkage through bar-and-hinge analysis and experiments using physical prototypes.

Read More

Journal of Mechanisms and Robotics Open Issues