Latest Papers

ASME Journal of Mechanisms and Robotics

  • Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
    on September 24, 2024 at 12:00 am

    AbstractDielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible film of the DEA. In this paper, a novel class of 2D profile linear DEAs (butterfly- and X-shaped linear DEAs) with compact structure is introduced, which, employing negative-stiffness mechanisms, can largely increase the stroke of the actuators. Then, a dynamic model of the proposed amplified-stroke linear DEAs (ASL-DEAs) is developed and used to predict the actuator stroke. The fabrication process of linear DEAs is presented. This, using compliant joints, 3D-printed links, and dielectric elastomer, allows for rapid and affordable production. The experimental validation of the butterfly- and X-shaped linear DEAs proved capable of increasing the stroke up to 32.7% and 24.0%, respectively, compared with the conventional design employing springs and constant weights. Finally, the dynamic model is validated against the experimental data of stroke amplitude and output force; errors smaller than 10.5% for a large stroke amplitude (60% of maximum stroke) and 10.5% on the output force are observed.

Designing and Analyzing Multistable Mechanisms Using Quadrilateral Boundary Rigid Origami

Abstract

Multistable origami and its snapping behaviors between the folded states have attracted scientists’ and engineers’ attention as the building block for the design of mechanical devices and metamaterials. We propose a novel method for designing origami-based multistable structures, by which we mean (1) to obtain the prescribed overall motion and (2) to control the stiffness of snapping provided by the elastic strain. We solve this design problem by first representing the desired motion with linkage structures with quadrilateral holes, called the frames, and then filling the frames with origami modules, called quadrilateral boundary modules. By introducing an intentional incompatibility between the motions of the frames and the modules, we design the snapping behavior that follows the linkage motion. We provide the representation model to evaluate the incompatibility and propose an optimization-based framework for the design. We also validate our design applied to a Sarrus linkage through bar-and-hinge analysis and experiments using physical prototypes.

Read More

Journal of Mechanisms and Robotics Open Issues