Latest Papers

ASME Journal of Mechanisms and Robotics

  • Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
    on September 24, 2024 at 12:00 am

    AbstractDielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible film of the DEA. In this paper, a novel class of 2D profile linear DEAs (butterfly- and X-shaped linear DEAs) with compact structure is introduced, which, employing negative-stiffness mechanisms, can largely increase the stroke of the actuators. Then, a dynamic model of the proposed amplified-stroke linear DEAs (ASL-DEAs) is developed and used to predict the actuator stroke. The fabrication process of linear DEAs is presented. This, using compliant joints, 3D-printed links, and dielectric elastomer, allows for rapid and affordable production. The experimental validation of the butterfly- and X-shaped linear DEAs proved capable of increasing the stroke up to 32.7% and 24.0%, respectively, compared with the conventional design employing springs and constant weights. Finally, the dynamic model is validated against the experimental data of stroke amplitude and output force; errors smaller than 10.5% for a large stroke amplitude (60% of maximum stroke) and 10.5% on the output force are observed.

Development of a Three-Mobile-Robot System for Cooperative Transportation

Abstract

The transportation of large-scale objects in a narrow space is a challenging, but useful application for mobile robots. We have developed a three-mobile-robot system to cooperatively lift, support, and transport a large object on a mobile robot system. To facilitate the manipulation involved with loading an object onto the robots, where the robots must maintain firm contact with the object and anchor at its location, we designed an adaptable mechanism for the object-loading platform and a liftable brake to ensure that the robot remains stationary when necessary. Furthermore, each robot is designed to act as an omnidirectional wheel; therefore, all three robots can work as an omnidirectional block when collectively loading an object. The kinematic constraints of the object–robot system and forward kinematics of the robots’ cooperative motion are proposed, and experiments are conducted to confirm the designed mechanisms and confirm that the robots can load an object and cooperatively transport it along the expected trajectory.

Read More

Journal of Mechanisms and Robotics Open Issues