Latest Papers

ASME Journal of Mechanisms and Robotics

  • Integrated Wheel–Foot–Arm Design of a Mobile Platform With Linkage Mechanisms
    on March 20, 2024 at 12:00 am

    AbstractInspired by lizards, a novel mobile platform with revolving linkage legs is proposed. The platform consists of four six-bar bipedal modules, and it is designed for heavy transportation on unstructured terrain. The platform possesses smooth-wheeled locomotion and obstacle-adaptive legged locomotion to enhance maneuverability. The kinematics of the six-bar bipedal modules is analyzed using the vector loop method, subsequently ascertaining the drive scheme. The foot trajectory compensation curve is generated using the fixed-axis rotation contour algorithm, which effectively reduces the centroid fluctuation and enables seamless switching between wheels and legs. When encountering obstacles, the revolving linkage legs act as climbing arms, facilitating seamless integration of wheel, foot, and arm. A physical prototype is developed to test the platform on three typical terrains: flat terrain, slope, and vertical obstacle. The experimental results demonstrated the feasibility of the platform structure. The platform can climb obstacles higher than its own height without adding extra actuation.

A Novel Variable Stiffness Compliant Robotic Link Based on Discrete Variable Stiffness Units for Safe Human–Robot Interaction

Abstract

Variable stiffness manipulators balance the trade-off between manipulation performance needing high stiffness and safe human–robot interaction desiring low stiffness. Variable stiffness links enable this flexible manipulation function during human–robot interaction. In this paper, we propose a novel variable stiffness link based on discrete variable stiffness units (DSUs). A DSU is a parallel guided beam that can adjust stiffness discretely by changing the cross-sectional area properties of the hollow beam segments. The variable stiffness link (Tri-DSU) consists of three tandem DSUs to achieve eight stiffness modes and a stiffness ratio of 31. To optimize the design, stiffness analysis of the DSU and Tri-DSU under various configurations and forces was performed by a derived linear analytical model which applies to small/intermediate deflections. The model is derived using the approach of serially connected beams and superposition combinations. 3D-Printed prototypes were built to verify the feature and performance of the Tri-DSU in comparison with the finite element analysis and analytical model results. It’s demonstrated that our model can accurately predict the stiffnesses of the DSU and Tri-DSU within a certain range of parameters. Impact tests were also conducted to validate the performance of the Tri-DSU. The developed method and analytical model are extendable to multiple DSUs with parameter configurations to achieve modularization and customization, and also provide a tool for the design of reconfigurable collaborative robot (cobot) manipulators.

Read More

Journal of Mechanisms and Robotics Open Issues