Latest Papers

ASME Journal of Mechanisms and Robotics

  • A Small-Scale Integrated Jumping-Crawling Robot: Design, Modeling, and Demonstration
    on June 16, 2025 at 12:00 am

    AbstractThe small jumping-crawling robot improves its obstacle-crossing ability by selecting appropriate locomotion methods. However, current research on jumping-crawling robots remains focused on enhancing specific aspects of performance, and several issues still exist, including nonadjustable gaits, poor stability, nonadjustable jumping posture, and poor motion continuity. This article presents a small jumping-crawling robot with decoupled jumping and crawling mechanisms, offline adjustable gaits, autonomous self-righting, autonomous steering, and certain slope-climbing abilities. The crawling mechanism adopts a partially adjustable Klann six-bar linkage, which can generate four stride lengths and three gaits. The jumping mechanism is designed as a six-bar linkage with passive compliance, and an active clutch allows energy storage and release in any state. The autonomous self-righting mechanism enables the robot to self-right after tipping over, meanwhile providing support, steering, and posture adjustment functions. Prototype experiments show that the designed robot demonstrates good motion stability and can climb a 45 deg slope without tipping over. The robot shows excellent steering performance, with a single action taking 5 s and achieving a steering angle of 11.5 deg. It also exhibits good motion continuity, with an average recovery time of 12 s to return to crawling mode after a jump. Crawling experiments on rough terrain demonstrate the feasibility of applying the designed robot in real-world scenarios.

Self-Adaptive Obstacle Crossing of an AntiBot From Reconfiguration Control and Mechanical Adaptation

Abstract

One drawback of wheeled robots is their inferiority to conquer large obstacles and perform well on complicated terrains, which limits their application in rescue missions. To provide a solution to this issue, an ant-like six-wheeled reconfigurable robot, called AntiBot, is proposed in this paper. The AntiBot has a Sarrus reconfiguration body, a three-rocker-leg passive suspension, and mechanical adaptable obstacle-climbing wheeled legs. In this paper, we demonstrate through simulations and experiments that this robot can change the position of its center of mass actively to improve its obstacle-crossing capability. The geometric and static stability conditions for obstacle crossing of the robot are derived and formulated, and numerical simulations are conducted to find the feasible region of the robot’s configuration in obstacle crossing. In addition, a self-adaptive obstacle-crossing algorithm is proposed to improve the robot’s obstacle-crossing performance. A physical prototype is developed, and using it, a series of experiments are carried out to verify the effectiveness of the proposed self-adaptive obstacle-crossing algorithm.

Read More

Journal of Mechanisms and Robotics Open Issues