Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Design Considerations and Robustness to Parameter Uncertainty in Wire-Wrapped Cam Mechanisms


Collaborative robots must simultaneously be safe enough to operate in close proximity to human operators and powerful enough to assist users in industrial tasks such as lifting heavy equipment. The requirement for safety necessitates that collaborative robots are designed with low-powered actuators. However, some industrial tasks may require the robot to have high payload capacity and/or long reach. For collaborative robot designs to be successful, they must find ways of addressing these conflicting design requirements. One promising strategy for navigating this tradeoff is through the use of static balancing mechanisms to offset the robot’s self-weight, thus enabling the selection of low-powered actuators. In this paper, we introduce a novel, two degrees-of-freedom static balancing mechanism based on spring-loaded, wire-wrapped cams. We also present an optimization-based cam design method that guarantees the cams stay convex, ensures the springs stay below their extensions limits, and minimizes sensitivity to unmodeled deviations from the nominal spring constant. Additionally, we present a model of the effect of friction between the wire and the cam. Lastly, we show experimentally that the torque generated by the cam mechanism matches the torque predicted in our modeling approach. Our results also suggest that the effects of wire-cam friction are significant for non-circular cams.

Read More

Journal of Mechanisms and Robotics Open Issues