Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Design and Development of the Transmission for a Fully Actuated 5-Degrees-of-Freedom Compliant Robot Manipulator With a Single Motor


This article presents a novel architecture for the actuation and transmission system of a 5-degrees-of-freedom (DOFs) compliant robot manipulator. The compliant behavior of the robot is achieved using inherently compliant magneto-rheological (MR) clutches introduced in antagonistic pairs in every joint of the manipulator. All five antagonistic MR clutch pairs are driven using a single brushless DC motor located in the base of the robot. The MR clutch pairs are coupled to the motor through a system of shafts, belts, and gears. Several possible architectures for realizing a suitable drive train are presented, and the advantages and disadvantages of each concept are analyzed. The most efficient architecture for the drive train is selected to complete the design of the manipulator. The kinematics of the manipulator using the adopted architecture is further analyzed, and the workspace of the system is presented. To the best of our knowledge, this is the first 5-DOF, fully actuated, compliant robotic manipulator that uses a single DC motor to achieve five independent axes of rotations.

Read More

Journal of Mechanisms and Robotics Open Issues