Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

A Novel Reconfigurable 3-DOF Parallel Kinematics Machine

Abstract

This paper proposes a novel, reconfigurable parallel kinematics machine with three degrees of freedom that can be used for various three-axis manipulation tasks, including machining. By locking some joints, the proposed parallel kinematics machine (PKM) can be transformed into four topologies with eight configurations to attain certain kinematic properties while keeping the number of its degrees of freedom unchanged. Either the proximal or intermediate prismatic joints of the reconfigurable PKM can be actuated. Some of the configurations are orthogonal configurations having a large rectangular cuboid workspace, and some other configurations are non-orthogonal configurations which provide the capability to perform a machining task to a large workpiece in various positions with respect to the machine. Accordingly, the proposed machine can be transformed from an orthogonal machine to a non-orthogonal machine with the advantages of each. The mobility of the various topologies of the reconfigurable PKM is rigorously analyzed using the screw theory. The workspace is analyzed using a graphical approach and verified by a computational approach. The pose kinematics shows that the various topologies have unified kinematics. The differential kinematics shows that the singularities in the various configurations occur at the workspace boundary. Similarly, the stiffness analysis shows that the low-stiffness postures occur around the workspace boundary. Accordingly, a used workspace far from the workspace boundary easily avoids the singularities and the low stiffness.

Read More

Journal of Mechanisms and Robotics Open Issues