Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Experimental Safety Analysis of R-Min, an Underactuated Parallel Robot


The R-Min robot is an intrinsically safe parallel manipulator dedicated to pick-and-place operations. The proposed architecture is based on a five-bar mechanism, with additional passive joints in order to obtain a planar seven-bar mechanism with two degrees of underactuation, allowing the robot to reconfigure in case of a collision. A preload bar is added between the base and the end-effector to constrain the additional degrees-of-freedom. This article presents an analysis of the workspace and of the safety performances of the R-Min robot, and it compares them with those of the five-bar mechanism, in order to evaluate the benefits of introducing underactuation in a parallel architecture to obtain intrinsically safer robots. The geometrico-static model of the R-Min robot is formulated as an optimization problem. The direct and inverse kinemato-static models are derived from the geometrico-static model and they allow to express the singularity conditions of the R-Min robot. An analysis of the singularity loci is carried out among the robot’s workspace. A controller based on the dynamic model is proposed and experimentally validated on a prototype of the R-Min robot. Finally, the safety performances of the R-Min robot are evaluated experimentally and they are compared with that of an equivalent five-bar mechanism, using the maximum impact force as a safety criteria in accordance with recent international standards.

Read More

Journal of Mechanisms and Robotics Open Issues