Latest Papers

ASME Journal of Mechanisms and Robotics

  • An Improved Dual Quaternion Dynamic Movement Primitives-Based Algorithm for Robot-Agnostic Learning and Execution of Throwing Tasks
    on May 9, 2025 at 12:00 am

    AbstractInspired by human nature, roboticists have conceived robots as tools meant to be flexible, capable of performing a wide variety of tasks. Learning from demonstration methods allow us to “teach” robots the way we would perform tasks, in a versatile and adaptive manner. Dynamic movement primitives (DMP) aims for learning complex behaviors in such a way, representing tasks as stable, well-understood dynamical systems. By modeling movements over the SE(3) group, modeled primitives can be generalized for any robotic manipulator capable of full end-effector 3D movement. In this article, we present a robot-agnostic formulation of discrete DMP based on the dual quaternion algebra, oriented to modeling throwing movements. We consider adapted initial and final poses and velocities, all computed from a projectile kinematic model and from the goal at which the projectile is aimed. Experimental demonstrations are carried out in both a simulated and a real environment. Results support the effectiveness of the improved method formulation.

  • Chained Timoshenko Beam Constraint Model With Applications in Large Deflection Analysis of Compliant Mechanism
    on May 9, 2025 at 12:00 am

    AbstractAccurately analyzing the large deformation behaviors of compliant mechanisms has always been a significant challenge in the design process. The classical Euler–Bernoulli beam theory serves as the primary theoretical basis for the large deformation analysis of compliant mechanisms. However, neglecting shear effects may reduce the accuracy of modeling compliant mechanisms. Inspired by the beam constraint model, this study takes a step further to develop a Timoshenko beam constraint model (TBCM) for initially curved beams to capture intermediate-range deflections under beam-end loading conditions. On this basis, the chained Timoshenko beam constraint model (CTBCM) is proposed for large deformation analysis and kinetostatic modeling of compliant mechanisms. The accuracy and feasibility of the proposed TBCM and CTBCM have been validated through modeling and analysis of curved beam mechanisms. Results indicate that TBCM and CTBCM are more accurate compared to the Euler beam constraint model (EBCM) and the chained Euler beam constraint model (CEBCM). Additionally, CTBCM has been found to offer computational advantages, as it requires fewer discrete elements to achieve convergence.

Experimental Safety Analysis of R-Min, an Underactuated Parallel Robot

Abstract

The R-Min robot is an intrinsically safe parallel manipulator dedicated to pick-and-place operations. The proposed architecture is based on a five-bar mechanism, with additional passive joints in order to obtain a planar seven-bar mechanism with two degrees of underactuation, allowing the robot to reconfigure in case of a collision. A preload bar is added between the base and the end-effector to constrain the additional degrees-of-freedom. This article presents an analysis of the workspace and of the safety performances of the R-Min robot, and it compares them with those of the five-bar mechanism, in order to evaluate the benefits of introducing underactuation in a parallel architecture to obtain intrinsically safer robots. The geometrico-static model of the R-Min robot is formulated as an optimization problem. The direct and inverse kinemato-static models are derived from the geometrico-static model and they allow to express the singularity conditions of the R-Min robot. An analysis of the singularity loci is carried out among the robot’s workspace. A controller based on the dynamic model is proposed and experimentally validated on a prototype of the R-Min robot. Finally, the safety performances of the R-Min robot are evaluated experimentally and they are compared with that of an equivalent five-bar mechanism, using the maximum impact force as a safety criteria in accordance with recent international standards.

Read More

Journal of Mechanisms and Robotics Open Issues