Latest Papers

ASME Journal of Mechanisms and Robotics

  • Stable Inverse Dynamics for Feedforward Control of Nonminimum-Phase Underactuated Systems
    on January 25, 2023 at 12:00 am

    AbstractAn enhanced inverse dynamics approach is here presented for feedforward control of underactuated multibody systems, such as mechanisms or robots where the number of independent actuators is smaller than the number of degrees of freedom. The method exploits the concept of partitioning the independent coordinates into actuated and unactuated ones (through a QR-decomposition) and of linearly combined output, to obtain the internal dynamics of the nonminimum-phase system and then to stabilize it through proper output redefinition. Then, the exact algebraic model of the actuated sub-system is inverted, leading to the desired control forces with just minor approximations and no need for pre-actuation. The effectiveness of the proposed approach is assessed by three numerical test cases, by comparing it with some meaningful benchmarks taken from the literature. Finally, experimental verification through an underactuated robotic arm with two degrees of freedom is performed.

Thick-Panel Origami Tubes With Hexagonal Cross-Sections

Abstract

Rigidly foldable origami tubes can be kinematically regarded as assemblies of spherical linkages. They have exhibited excellent properties for deployable structures. Yet, for the engineering applications, the corresponding thick-panel forms have to be designed. In this paper, the spherical 4R linkages in tubes with hexagonal cross-sections are partially replaced by spatial linkages, leading to a method to construct the thick-panel tubes, which can reproduce kinematic motions equivalent to those realized using zero-thickness origami. Based on the D–H matrix method, the rotational symmetric and symmetric tubes are introduced, together with their four types of vertexes, where the specific spherical 4R linkages are replaced by Bennett and Bricard linkages to obtain the thick-panel foldable tubes. The approach can be applied to multilayered tubes with a straight or curved profile, whose manufacture can be simplified by removing extra links. The results can be readily utilized to the design of deployable tubular structures whose thickness cannot be disregarded.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy