Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Design and Control of SLPM-Based Extensible Continuum Arm

Abstract

As an important branch of reconfigurable robots, extensible continuum robots are soft and light, with the flexibility of movement and high adaptability in complex environments. These robots have very broad applications in a variety of fields, including military reconnaissance, geological exploration and rescue operations. In this paper, a high folding ratio, flexible, and compact extensible continuum arm is designed using a novel combination of parallel and deployable mechanisms. We present the spherical-linkage parallel mechanism (SLPM) as a flexure hinge. The analysis suggests that the SLPM is highly flexible and meets the requirements for many DoFs (degrees-of-freedom) needed in various fields. The folding ratio of the SLPM was 72.73. Following this, we present an SLPM compliant module powered by a set of embedded shape memory alloy (SMA) springs. These can change the internal elasticity of the module as temperature changes, thereby varying the stiffness. Moreover, the control system is designed to enable real-time cooperation between multiple motors and carries out simulations for deployable motion. The extensible continuum arm prototype was manufactured and its performance was tested in complex environments. From the results, it is shown that the arm can be utilized for rescue during disasters as well as investigation and repair of aircraft engines.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy