Latest Papers

ASME Journal of Mechanisms and Robotics

  • Design of Reconfigurable Articulated Walking Mechanisms for Diverse Motion Behaviors
    on March 20, 2025 at 12:00 am

    AbstractLegged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of novel reconfigurable parallel linkages that not only produce different walking patterns but also realize behaviors beyond locomotion. Experiments with an implemented wearable device able to guide the lower extremity through multiple human-like walking trajectories are presented and the preliminary results validate the proposed approach.

  • Modeling, Kinematics, and Dynamics of a Rigid-Flexible Coupling Spring-Cable-Driven Parallel Robot
    on March 20, 2025 at 12:00 am

    AbstractConventional parallel robots are made of rigid materials for the purpose of fast and accurate localization, exhibiting limited performance in large-scale operations. Inspired by the softness and natural compliance of biological systems, this article proposes a rigid-flexible coupling cable-driven parallel robot. The concept of flexible cable and spring hybrid and working principle are introduced. The kinematics of single module and multiple modules connected in series are analyzed and equations are given, and the Lagrange equation is used to establish dynamic models. Finally, two methods are used to validate the kinematics and dynamics. One is to draw the specific structure with the posture of the end-effector and measure the cable length to compare it with the analytical solution in the kinematic model. The other is to build the structure and joint characteristics in simulink, given the posture of the end-effector and the external force/torque, the cable length and the force applied are compared with those obtained from the dynamic model. The reasonableness of the mechanism and the feasibility of the kinematic and dynamic models are verified.

Closed-Loop Trajectory Tracking Control of a Cable-Driven Continuum Robot With Integrated Draw Tower Grating Sensor Feedback

Abstract

Due to the inherent deformability of continuum robots (CRs), closed-loop control strategies of CRs come with some challenges, including sensor integration within a limited dimension and uncertainties with the CR system. In this paper, to obtain the spatial shape information and tip position of a cable-driven CR, a draw tower grating (DTG) sensor is integrated. A shape sensing algorithm is proposed to reconstruct the shape of the CR based on the relation between the DTG sensor and the CR centerline. Then, with the feedback information of the DTG sensor, a damped least-squares (DLS)-based closed-loop controller is implemented to improve the trajectory tracking performance of the CR. To verify the effectiveness of the proposed scheme, comparative experiments are performed.

Read More

Journal of Mechanisms and Robotics Open Issues