Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Mechanical Characterization of Compliant Cellular Robots. Part I: Passive Stiffness

Abstract

Modular active cell robots (MACROs) are a design paradigm for modular robotic hardware that uses only two components, namely actuators and passive compliant joints. Under the MACRO approach, a large number of actuators and joints are connected to create mesh-like cellular robotic structures that can be actuated to achieve large deformation and shape change. In this two-part paper, we study the importance of different possible mesh topologies within the MACRO framework. Regular and semi-regular tilings of the plane are used as the candidate mesh topologies and simulated using finite element analysis (FEA). In Part 1, we use FEA to evaluate their passive stiffness characteristics. Using a strain-energy method, the homogenized material properties (Young’s modulus, shear modulus, and Poisson’s ratio) of the different mesh topologies are computed and compared. The results show that the stiffnesses increase with increasing nodal connectivity and that stretching-dominated topologies have higher stiffness compared to bending-dominated ones. We also investigate the role of relative actuator-node stiffness on the overall mesh characteristics. This analysis shows that the stiffness of stretching-dominated topologies scales directly with their cross-section area whereas bending-dominated ones do not have such a direct relationship.

Read More

Journal of Mechanisms and Robotics Open Issues