Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Kinematic Performance and Static Analysis of a Two-Degree-of-Freedom 3-RPS/US Parallel Manipulator With Two Passive Limbs

Abstract

In this paper, a new 3-RPS (the limb consisting of one revolute, one prismatic, and one spherical joint)/US (universal joint and spherical joint) parallel mechanism with two degrees-of-freedom (DOFs) is obtained by adding a US passive limb into the 3-RPS parallel mechanism with the aim of obtaining a high load-bearing capacity. The moving platform possesses two rotational motions, analyzed by the Grassmann line geometry and screw theory. Then, the kinematic performance of the mechanism is analyzed, including inverse kinematics, overall Jacobian matrix, workspace, and singularity. On this basis, the mapping between the driving force and the load on the moving platform is deduced and verified by simulation. Next, the static of the proposed parallel mechanism is compared with that of the 3-RPS mechanism. The results show that the load-bearing capacity of the mechanism is improved by introducing the US passive limb. Finally, a case study verifies the potential application of the mechanism as a dual-axis tracking photovoltaic bracket.

Read More

Journal of Mechanisms and Robotics Open Issues