Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Operational Space Iterative Learning Control of Coupled Active/Passive Multilink Cable-Driven Hyper-Redundant Robots

Abstract

The operational space control (OSC) of multilink cable-driven hyper-redundant robots (MCDHRs) is required to perform tasks in many applications. As a new coupled active-passive (CAP) MCDHR system, due to the multiple couplings between the active cables, the passive cables, the joints, and the end-effector, the OSC becomes more and more complicated. However, there is currently no robust and effective control method to solve the OSC problem of such types MCDHRs. In this paper, an OSC framework of CAP-MCDHRs using a dynamics-based iterative-learning-control (ILC) method is proposed, considering multivariate optimization. First, the multi-coupling kinematics and the series-parallel coupling dynamics equation (i.e., cable-joint-end) of the CAP-MCDHR are derived. Then, a dynamics-based trajectory tracking framework was constructed. Moreover, an OSC accuracy evaluation model based on a high-precision laser tracker was also designed. The framework allows the tracking of operational space trajectories (OSTs) online with the feasible cable tension and the joint angle. It is also shown that the tracking performance can be improved through the ILC when the desired trajectory is repeatedly performed. Finally, a simulation and an experimental hardware system are built. The results show that the proposed control framework can be easily and effectively applied to the CAP-MCDHR used in real-time.

Read More

Journal of Mechanisms and Robotics Open Issues