Latest Papers

ASME Journal of Mechanisms and Robotics

  • Integrated Wheel–Foot–Arm Design of a Mobile Platform With Linkage Mechanisms
    on March 20, 2024 at 12:00 am

    AbstractInspired by lizards, a novel mobile platform with revolving linkage legs is proposed. The platform consists of four six-bar bipedal modules, and it is designed for heavy transportation on unstructured terrain. The platform possesses smooth-wheeled locomotion and obstacle-adaptive legged locomotion to enhance maneuverability. The kinematics of the six-bar bipedal modules is analyzed using the vector loop method, subsequently ascertaining the drive scheme. The foot trajectory compensation curve is generated using the fixed-axis rotation contour algorithm, which effectively reduces the centroid fluctuation and enables seamless switching between wheels and legs. When encountering obstacles, the revolving linkage legs act as climbing arms, facilitating seamless integration of wheel, foot, and arm. A physical prototype is developed to test the platform on three typical terrains: flat terrain, slope, and vertical obstacle. The experimental results demonstrated the feasibility of the platform structure. The platform can climb obstacles higher than its own height without adding extra actuation.

Classification of 3-Degree-of-Freedom 3-UPU Translational Parallel Mechanisms Based on Constraint Singularity Loci Using Gröbner Cover

Abstract

A 3-degree-of-freedom (DOF) 3-UPU translational parallel mechanism (TPM) is one of the typical TPMs. Despite comprehensive studies on 3-UPU TPMs in which the joint axes on the base and the moving platform are coplanar, only a few 3-UPU TPMs with skewed base and moving platform have been proposed, and the impact of link parameters on constraint singularity loci of such TPMs has not been systematically investigated. The advances in computing comprehensive Gröbner system (CGS) or Gröbner cover of parametric polynomial systems provide an efficient tool for solving this problem. This paper presents a systematic classification of 3-UPU TPMs with skewed base and moving platform based on constraint singularity loci. First, the constraint singularity equation of a 3-UPU TPM is derived. Using Gröbner cover, the 3-UPU TPMs are classified into 12 types. Finally, a novel 3-UPU TPM is proposed. Reconfiguration analysis shows that unlike most existing 3-UPU TPMs which can transit from a 3-DOF translational mode to two or more 3-DOF operation modes, the proposed 3-UPU TPM can only transit from a 3-DOF translational mode to one general 3-DOF operation mode. The singularity locus divides the workspace of this 3-UPU TPM into two constraint singularity-free regions. As a by-product, a 3-UPU parallel mechanism that the moving platform can undergo 3-DOF translation and 1-DOF infinitesimal rotation is revealed. This work provides a solid foundation for the design of 3-UPU TPMs and a starting point for the classification of 3-UPU parallel mechanisms.

Read More

Journal of Mechanisms and Robotics Open Issues