Latest Papers

ASME Journal of Mechanisms and Robotics

  • Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
    on September 24, 2024 at 12:00 am

    AbstractDielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible film of the DEA. In this paper, a novel class of 2D profile linear DEAs (butterfly- and X-shaped linear DEAs) with compact structure is introduced, which, employing negative-stiffness mechanisms, can largely increase the stroke of the actuators. Then, a dynamic model of the proposed amplified-stroke linear DEAs (ASL-DEAs) is developed and used to predict the actuator stroke. The fabrication process of linear DEAs is presented. This, using compliant joints, 3D-printed links, and dielectric elastomer, allows for rapid and affordable production. The experimental validation of the butterfly- and X-shaped linear DEAs proved capable of increasing the stroke up to 32.7% and 24.0%, respectively, compared with the conventional design employing springs and constant weights. Finally, the dynamic model is validated against the experimental data of stroke amplitude and output force; errors smaller than 10.5% for a large stroke amplitude (60% of maximum stroke) and 10.5% on the output force are observed.

Dynamic Modeling and Simulation of a Hybrid Robot

Abstract

The unique structure of hybrid robot makes its dynamic characteristic different from that of the traditional machine tools. Therefore, the dynamic model is crucial to both designing and application of hybrid robot. In this paper, a new type of five-degrees-of-freedom (5DoF) hybrid robot is introduced, and its dynamic model is established. First, the kinematic formulas are derived for all the component, and then, the inertia forces or moments are calculated. Second, the active forces or moments in the joints are assumed as variables and the number of variables is reduced by analyzing joint types. Then, an equation set of 36 equilibrium equations with 38 variables is obtained using D’Alembert’s principle. Based on the spatial deformation compatibility analysis of two branches, two supplementary equations are derived to determine the solution of dynamic model of the hybrid robot with redundant constraints in its parallel mechanism. Several cases are studied by comparing with ADAMS simulation. The result shows the good accuracy of the proposed dynamic model, which provides a practical method to calculate the reaction force or moment in any joint at any instant for the hybrid robot and thus facilitates dimensional synthesis, trajectory optimization, and smoothing control.

Read More

Journal of Mechanisms and Robotics Open Issues