Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Dynamic Modeling and Simulation of a Hybrid Robot

Abstract

The unique structure of hybrid robot makes its dynamic characteristic different from that of the traditional machine tools. Therefore, the dynamic model is crucial to both designing and application of hybrid robot. In this paper, a new type of five-degrees-of-freedom (5DoF) hybrid robot is introduced, and its dynamic model is established. First, the kinematic formulas are derived for all the component, and then, the inertia forces or moments are calculated. Second, the active forces or moments in the joints are assumed as variables and the number of variables is reduced by analyzing joint types. Then, an equation set of 36 equilibrium equations with 38 variables is obtained using D’Alembert’s principle. Based on the spatial deformation compatibility analysis of two branches, two supplementary equations are derived to determine the solution of dynamic model of the hybrid robot with redundant constraints in its parallel mechanism. Several cases are studied by comparing with ADAMS simulation. The result shows the good accuracy of the proposed dynamic model, which provides a practical method to calculate the reaction force or moment in any joint at any instant for the hybrid robot and thus facilitates dimensional synthesis, trajectory optimization, and smoothing control.

Read More

Journal of Mechanisms and Robotics Open Issues