Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

A Snake-Inspired Swallowing Robot Based on Hoberman’s Linkages

Abstract

To solve the problems of existing swallowing robots, such as low load capacity, small deploy/fold ratio, and small swallowing space, this article presents a new snake-inspired swallowing robot (SSR) that can synchronously deploy and fold both axially and radially. The SSR is composed of multiple modules, each of which includes two end disk mechanisms (EDMs) and three connecting backbone mechanisms (CBBMs). The EDM is designed based on Hoberman’s linkages to achieve a radial deployment and a folding motion, while the CBBM is designed to realize the axial deployment and the folding movement and connect the EDMs. In addition, the driving device is designed. Then, to achieve the maximum deploy/fold ratio of the SSR and meet the requirements of assembly, the length of the rods is optimized on the basis of the kinematics analysis of the SSR. The final deploy/fold ratio reached up to 2.2459. The ratio of the maximum to the minimum swallowing space is 28.2754. In the end, experiments are conducted to evaluate the ability to swallow and store one object and multiple objects.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy