Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

A Rigid Morphing Mechanism Enabled Earthworm-Like Crawling Robot


Inspired by natural earthworms’ locomotion mechanism, this paper investigates how the earthworm’s muscle works and presents the approach to mimic segmental muscle by employing rigid elements-based morphing structures. Specifically, the proposed earthworm-like robot employs a class of 2D rigid elements and their array to achieve programable bidirectional 3D deformation, making the formed mechanism precisely controllable and work effectively, thus facilitating the robot’s peristaltic locomotion more efficient. To comprehensively investigate the morphing structure and its formed earthworm-like robot, the kinematics, mechanics, deformation-dependent locomotion framework with its adapted model, as well as the factors that affect the optimal velocity are developed and presented. Extensive simulations and experiments on the proposed robot are performed. The results verify the effectiveness of the morphing mechanism and it enabled earthworm-like robot and the consistency between the proposed locomotion model and the practical tests. The results also prove that regardless of the condition of the contact surface, the optimal phase shift angle can be achieved when each segment approximately contracts and relaxes once in one wavelength period. Our developed prototype achieves a speed of multiple body lengths per minute, which is very competitive compared with most developed earthworm-like robots.

Read More

Journal of Mechanisms and Robotics Open Issues