Latest Papers

ASME Journal of Mechanisms and Robotics

  • Stable Inverse Dynamics for Feedforward Control of Nonminimum-Phase Underactuated Systems
    on January 25, 2023 at 12:00 am

    AbstractAn enhanced inverse dynamics approach is here presented for feedforward control of underactuated multibody systems, such as mechanisms or robots where the number of independent actuators is smaller than the number of degrees of freedom. The method exploits the concept of partitioning the independent coordinates into actuated and unactuated ones (through a QR-decomposition) and of linearly combined output, to obtain the internal dynamics of the nonminimum-phase system and then to stabilize it through proper output redefinition. Then, the exact algebraic model of the actuated sub-system is inverted, leading to the desired control forces with just minor approximations and no need for pre-actuation. The effectiveness of the proposed approach is assessed by three numerical test cases, by comparing it with some meaningful benchmarks taken from the literature. Finally, experimental verification through an underactuated robotic arm with two degrees of freedom is performed.

Shrinkable Self-Similar Structure Design

Abstract

Origami techniques, as folding and unfolding, can be utilized in shrinkable structures. Especially when the crease pattern is rigid foldable, it can be treated as a mechanical linkage of rigid panels connected by hinges. Since rigid foldable crease patterns have the strong geometrical constraint of the facets not being able to stretch or bend, it is difficult to design new crease patterns, and variations of existing patterns are limited. However, it is known that there are cases where crease patterns can be made rigid foldable by adding some slits. This paper proposes a mechanical linkage that folds into a similar flat shape by adding slits. A method is presented of generating rigid foldable crease patterns in arbitrary polygons that fold smaller, and it is confirmed that structures that have a mechanism for shrinking can be generated from these crease patterns using rigid thick panels and hinges.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy