Latest Papers

ASME Journal of Mechanisms and Robotics

  • Robust Multilegged Walking Robots for Interactions With Different Terrains
    on May 26, 2023 at 12:00 am

    AbstractThis paper explores the kinematic synthesis, design, and pilot experimental testing of a six-legged walking robotic platform able to traverse through different terrains. We aim to develop a structured approach to designing the limb morphology using a relaxed kinematic task with incorporated conditions on foot-environments interaction, specifically contact force direction and curvature constraints, related to maintaining contact. The design approach builds up incrementally starting with studying the basic human leg walking trajectory and then defining a “relaxed” kinematic task. The “relaxed” kinematic task consists only of two contact locations (toe-off and heel-strike) with higher-order motion task specifications compatible with foot-terrain(s) contact and curvature constraints in the vicinity of the two contacts. As the next step, an eight-bar leg image is created based on the “relaxed” kinematic task and incorporated within a six-legged walking robot. Pilot experimental tests explore if the proposed approach results in an adaptable behavior which allows the platform to incorporate different walking foot trajectories and gait styles coupled to each environment. The results suggest that the proposed “relaxed” higher-order motion task combined with the leg morphological properties and feet material allowed the platform to walk stably on the different terrains. Here we would like to note that one of the main advantages of the proposed method in comparison with other existing walking platforms is that the proposed robotic platform has carefully designed limb morphology with incorporated conditions on foot-environment interaction. Additionally, while most of the existing multilegged platforms incorporate one actuator per leg, or per joint, our goal is to explore the possibility of using a single actuator to drive all six legs of the platform. This is a critical step which opens the door for the development of future transformative technology that is largely independent of human control and able to learn about the environment through their own sensory systems.

Modeling of Industrial Robot Kinematics Using a Hybrid Analytical and Statistical Approach


Industrial robots are highly desirable in applications including manufacturing and surgery. However, errors in the modeling of the kinematics of robotic arms limit their positional accuracy in industrial applications. Specifically, analytical kinematic models of the robot arm suffer from errors in coefficient calibrations and the inability to account for effects including gear backlash. However, statistical modeling methods require an extensive amount of points for calibration, which is infeasible in practical industrial environments. Hence, this paper describes, develops, and experimentally validates a hybrid modeling methodology combining both analytical and statistical methods to describe the robot kinematics in an intuitive manner that is easily adaptable for small- and medium-sized industries. By formulating an explicitly described analytical kinematic model as a prior mean distribution of a Gaussian process, the prior distribution can be updated with experimental data using statistical Bayesian Inference, thus enabling more accurate description of the robot kinematics with fewer data points. The hybrid model is demonstrated to outperform an analytical model, a neural network model, and a Gaussian Process Regression model with no prior distribution in predicting both the forward and inverse kinematics of a UR5 and UR10 robot arm. Also, the error propagation of the inverse kinematic solutions is studied. In addition, the testing framework used in this work can be used as a standardized benchmark to evaluate alternative kinematic models.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy