Latest Papers

ASME Journal of Mechanisms and Robotics

  • Stable Inverse Dynamics for Feedforward Control of Nonminimum-Phase Underactuated Systems
    on January 25, 2023 at 12:00 am

    AbstractAn enhanced inverse dynamics approach is here presented for feedforward control of underactuated multibody systems, such as mechanisms or robots where the number of independent actuators is smaller than the number of degrees of freedom. The method exploits the concept of partitioning the independent coordinates into actuated and unactuated ones (through a QR-decomposition) and of linearly combined output, to obtain the internal dynamics of the nonminimum-phase system and then to stabilize it through proper output redefinition. Then, the exact algebraic model of the actuated sub-system is inverted, leading to the desired control forces with just minor approximations and no need for pre-actuation. The effectiveness of the proposed approach is assessed by three numerical test cases, by comparing it with some meaningful benchmarks taken from the literature. Finally, experimental verification through an underactuated robotic arm with two degrees of freedom is performed.

Design and Experimental Verification of a Parallel Hip Exoskeleton System for Full-Gait-Cycle Rehabilitation

Abstract

Rehabilitation with exoskeletons after hip joint replacement is a tendency to achieve efficient recovery of people to rebuild their human motor functions. However, the kinematic mismatch between the kinematic and biological hip is a problem in most existing exoskeletons that can cause additional stress in the hip. To avoid secondary damage, the misalignment between the mechanical and biological hip joint of an exoskeleton must be compensated. This paper introduces a novel hip exoskeleton system based on parallel structure. The exoskeleton can inherently address the kinematic mismatch by introducing additional kinematic redundancy, while requiring no additional kinematic components and volumes. To achieve bidirectional full-gait-cycle walking assistance, a remote actuation system is designed for power delivery, and a control scheme is proposed to reject disturbances caused by gait dynamics during walking exercises. Human testing was carried out to evaluate the performance of the system. The results show that the exoskeleton has good human–machine kinematic compatibility and can achieve promising force tracking in the presence of gait dynamics.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy