Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Theoretical Analysis on Nonlinear Buckling, Post-Buckling of Slender Beams and Bi-Stable Mechanisms


Compliant mechanisms (CMs) are used to transfer motion, force, and energy, taking advantages of the elastic deformation of the involved compliant members. A branch of special type of elastic phenomenon called (post) buckling has been widely considered in CMs: avoiding buckling for better payload-bearing capacity and utilizing post-buckling to produce multi-stable states. This paper digs into the essence of beam’s buckling and post-buckling behaviors where we start from the famous Euler–Bernoulli beam theory and then extend the mentioned linear theory into geometrically nonlinear one to handle multi-mode buckling problems via introducing the concept of bifurcation theory. Five representative beam buckling cases are studied in this paper, followed by detailed theoretical investigations of their post-buckling behaviors where the multi-state property has been proved. We finally propose a novel type of bi-stable mechanisms termed as pre-buckled bi-stable mechanisms (PBMs) that integrate the features of both rigid and compliant mechanisms. The theoretical insights of PBMs are presented in detail. To the best of our knowledge, this paper is the first study on the theoretical derivation of the kinematic models of PBMs, which could be an important contribution to this field.

Read More

Journal of Mechanisms and Robotics Open Issues