Latest Papers

ASME Journal of Mechanisms and Robotics

  • Design of Reconfigurable Articulated Walking Mechanisms for Diverse Motion Behaviors
    on March 20, 2025 at 12:00 am

    AbstractLegged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of novel reconfigurable parallel linkages that not only produce different walking patterns but also realize behaviors beyond locomotion. Experiments with an implemented wearable device able to guide the lower extremity through multiple human-like walking trajectories are presented and the preliminary results validate the proposed approach.

  • Modeling, Kinematics, and Dynamics of a Rigid-Flexible Coupling Spring-Cable-Driven Parallel Robot
    on March 20, 2025 at 12:00 am

    AbstractConventional parallel robots are made of rigid materials for the purpose of fast and accurate localization, exhibiting limited performance in large-scale operations. Inspired by the softness and natural compliance of biological systems, this article proposes a rigid-flexible coupling cable-driven parallel robot. The concept of flexible cable and spring hybrid and working principle are introduced. The kinematics of single module and multiple modules connected in series are analyzed and equations are given, and the Lagrange equation is used to establish dynamic models. Finally, two methods are used to validate the kinematics and dynamics. One is to draw the specific structure with the posture of the end-effector and measure the cable length to compare it with the analytical solution in the kinematic model. The other is to build the structure and joint characteristics in simulink, given the posture of the end-effector and the external force/torque, the cable length and the force applied are compared with those obtained from the dynamic model. The reasonableness of the mechanism and the feasibility of the kinematic and dynamic models are verified.

A Computational Design Synthesis Method for the Generation of Rigid Origami Crease Patterns

Abstract

Today most origami crease patterns used in technical applications are selected from a handful of well-known origami principles. Computational algorithms capable of generating novel crease patterns either target artistic origami, focus on quadrilateral creased paper, or do not incorporate direct knowledge for the purposeful design of crease patterns tailored to engineering applications. The lack of computational methods for the generative design of crease patterns for engineering applications arises from a multitude of geometric complexities intrinsic to origami, such as rigid foldability and rigid body modes (RBMs), many of which have been addressed by recent work of the authors. Based on these findings, in this paper we introduce a Computational Design Synthesis (CDS) method for the generative design of novel crease patterns to develop origami concepts for engineering applications. The proposed method first generates crease pattern graphs through a graph grammar that automatically builds the kinematic model of the underlying origami and introduces constraints for rigid foldability. Then, the method enumerates all design alternatives that arise from the assignment of different rigid body modes to the internal vertices. These design alternatives are then automatically optimized and checked for intersection to satisfy the given design task. The proposed method is generic and applied here to two design tasks that are a rigidly foldable gripper and a rigidly foldable robotic arm.

Read More

Journal of Mechanisms and Robotics Open Issues