Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Nonlinear Analysis of a Class of Inversion-Based Compliant Cross-Spring Pivots

Abstract

This article presents a nonlinear model of an inversion-based generalized cross-spring pivot (IG-CSP) using the beam constraint model (BCM), which can be employed for the geometric error analysis and the characteristic analysis of an inversion-based symmetric cross-spring pivot (IS-CSP). The load-dependent effects are classified into two ways, including the structure load-dependent effects and beam load-dependent effects, where the loading positions, geometric parameters of elastic flexures, and axial forces are the main contributing factors. The closed-form load–rotation relationships of an IS-CSP and a noninversion-based symmetric cross-spring pivot (NIS-CSP) are derived with consideration of the three contributing factors for analyzing the load-dependent effects. The load-dependent effects of IS-CSP and NIS-CSP are compared when the loading position is fixed. The rotational stiffness of the IS-CSP or NIS-CSP can be designed to increase, decrease, or remain constant with axial forces, by regulating the balance between the loading positions and the geometric parameters. The closed-form solution of the center shift of an IS-CSP is derived. The effects of axial forces on the IS-CSP center shift are analyzed and compared with those of a NIS-CSP. Finally, based on the nonlinear analysis results of IS-CSP and NIS-CSP, two new compound symmetric cross-spring pivots are presented and analyzed via analytical and finite element analysis models.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy