Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Locomotion Identification Method of One-Degree-of-Freedom Six-Bar for Jumping Robot

Abstract

Exploring the locomotion of creatures is a challenging task in bionic robots, and the existing iterative design methods are mainly based on one or two characteristics to optimize robots. Here, we introduce the thinking of system identification theory to bionic robots, bypassing the exploration of the dynamics and reducing the difficulty of design greatly. A one-degree-of-freedom (DOF) six-bar mechanism (Watt I) was designated as the model to be identified, and it was divided into two parts, i.e., a one-DOF four-bar linkage and a three-DOF series arm. Then, we formed constraints and a loss function. The parameters of the model were identified based on the kinematic data of a jumping marmoset, an animal chosen for its unusually high mass-specific power output. As a result, we obtained the desired model. Then, a prototype derived from the model was fabricated, and the experiments verified the effectiveness of the method. Based on the success of our experiments, we believe our method can be applied to emulate other motions as well.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy